热带海洋学报 ›› 2022, Vol. 41 ›› Issue (3): 46-53.doi: 10.11978/2021088

• 海洋调查与观测 • 上一篇    下一篇

基于无人机与卫星图像的大型绿藻孔石莼(Ulva pertusa)遥感估算研究

孟苗苗1,2,3(), 郑向阳1,2,3, 邢前国1,2,3(), 刘海龙1,2,3   

  1. 1.中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所), 山东 烟台 264003
    2.中国科学院海洋大科学研究中心, 山东 青岛 266071
    3.中国科学院大学, 北京 100049
  • 收稿日期:2021-07-09 修回日期:2021-09-02 发布日期:2021-09-19
  • 通讯作者: 邢前国
  • 作者简介:孟苗苗(1997—)女, 山东省菏泽市人, 硕士研究生, 主要研究方向为海洋遥感。email: mmeng@yic.ac.cn
  • 基金资助:
    国家自然科学基金(42076188);国家自然科学基金(41676171);中国科学院先导专项(XDA1906000);中国科学院先导专项(XDA19060203);中国科学院先导专项(XDA19060501);中国科学院仪器研发重点项目(YJKYYQ20170048)

Remote sensing estimation of green macroalgae Ulva pertusa based on unmanned aerial vehicle and satellite image

MENG Miaomiao1,2,3(), ZHENG Xiangyang1,2,3, XING Qianguo1,2,3(), LIU Hailong1,2,3   

  1. 1. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
    2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-07-09 Revised:2021-09-02 Published:2021-09-19
  • Contact: XING Qianguo
  • Supported by:
    National Natural Science Foundation of China(42076188);National Natural Science Foundation of China(41676171);The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1906000);The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19060203);The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19060501);The Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20170048)

摘要:

卫星影像是监测海面漂浮绿藻的重要数据源, 但是混合像元的存在使得绿藻提取存在一定的误差。想要实现近海区域底栖绿藻的精细监测, 需要解决绿藻亚像素覆盖度的问题。本文以厘米级分辨率无人机数据的绿藻提取结果为基准, 通过分析Landsat卫星影像绿藻光谱, 建立绿藻亚像素覆盖度与多种植被指数和多个特征波段反射率的反演模型。结果表明, 蓝、绿、红波段反射率与绿藻亚像素覆盖度呈现较好的线性关系, 随着绿藻亚像素覆盖度递增, 蓝、绿、红波段反射率的值均递减。将蓝、绿、红波段的三种绿藻亚像素覆盖模型进行验证, 发现绿波段反射率所建立的反演模型具有更高的准确性, 决定系数、均方根误差、平均相对误差分别为0.92%、0.07%、10.85%。本文所建立的模型可以估算大型绿藻亚像素覆盖度, 实现Landsat卫星影像对大型绿藻的精细监测。

关键词: 无人机, 卫星影像, 大型绿藻, 亚像素覆盖度

Abstract:

Satellite images are valuable data sources for monitoring floating green macroalgae on the sea surface. However, there are large errors in green macroalgae coverage derived on mixed pixels. It is thus important to solve the problem of sub-pixel coverage of green macroalgae, for precise monitoring of benthic green macroalgae in coastal area. In this paper, retrieval models were established to link sub-pixel coverage of green macroalgae with vegetation indexes and reflectance of characteristic bands by analyzing spectral characteristics of green macroalgae from the Landsat images, based on the results of green macroalgae coverage derived from unmanned aerial vehicle (UAV). The results show excellent linear relationships between the reflectance of blue, green, and red bands and the sub-pixel coverage of green macroalgae, and the reflectance decreases monotonically with increasing sub-pixel coverage. These three models were verified, and the results show that the model based on the reflectance of green band was more accuracy than the other indexes or index combination, with the highest coefficient of determination (R2), root mean square error (RMSE), and mean relative error (MRE) values of 0.92, 0.07, and 10.85%, respectively. Hence, we provide a model that can estimate the sub-pixel coverage of green macroalgae, and realize the precise monitoring of the coverage of green macroalgae extracted from Landsat images.

Key words: unmanned aerial vehicle (UAV), satellite image, green macroalgae, sub-pixel coverage

中图分类号: 

  • X87