莫桑比克海峡及其邻近海区正压潮流数值模拟与能量收支分析*
张华(1993—), 男, 广东省茂名市人, 博士研究生, 研究方向为潮致混合。email: |
Copy editor: 殷波
收稿日期: 2020-05-27
要求修回日期: 2020-07-20
网络出版日期: 2020-07-21
基金资助
国家自然科学基金项目(41931182)
国家自然科学基金项目(41521005)
国家自然科学基金项目(41676016)
广东省重点工程(2019BT2H594)
南方海洋科学与工程广东实验室(广州)引进人才队伍重点专项(GML2019ZD0303)
南方海洋科学与工程广东实验室(广州)引进人才队伍重点专项(GML2019ZD0304)
中国科学院重点部署项目(ZDRW-XH-2019-2)
中国科学院南海生态环境工程创新研究院自主部署项目(ISEE2018PY05)
热带海洋学国家重点实验室独立研究项目(LTOZZ1902)
热带海洋学国家重点实验室独立研究项目(LTOZZ1802)
版权
Numerical simulation of barotropic tides in Mozambique Strait and its adjacent coastal area and energy budget analysis*
Copy editor: YIN Bo
Received date: 2020-05-27
Request revised date: 2020-07-20
Online published: 2020-07-21
Supported by
National Natural Science Foundation of China(41931182)
National Natural Science Foundation of China(41521005)
National Natural Science Foundation of China(41676016)
Guangdong Key Project(2019BT2H594)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0303)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0304)
Key Deployment Projects of the Chinese Academy of Sciences(ZDRW-XH-2019-2)
Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2018PY05)
Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract(LTOZZ1902)
Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract(LTOZZ1802)
Copyright
莫桑比克海峡及其邻近海区是全球海洋潮流和潮能耗散最强的海区之一。文章利用高分辨率通用环流模式对该海区的正压潮流进行模拟, 并对该海区潮能通量和潮能耗散特征进行分析。结果表明, 莫桑比克海峡及其邻近海区的潮波主要是半日分潮占主导地位, 全日分潮可忽略不计, M2分潮形成1个左旋潮波系统和1个右旋潮波系统, S2分潮形成1个左旋潮波系统。莫桑比克海峡和马达加斯加岛南部等绝大数区域的M2和S2半日潮流是逆时针旋转, 在马达加斯加岛顶部等局部区域是顺时针旋转, 而且在海峡通道等复杂地形处潮流流速量级较大。潮能通量矢量主要来自东边界, 大部分潮能通量沿马达加斯岛北部传入莫桑比克海峡区域, 其中经过马达加斯加岛北部和进入莫桑比克海峡的M2 (S2)分潮的潮能通量分别为156.86GW (40.53GW)和148.07GW (36.05GW), S2分潮潮能通量的量级大约为M2分潮的1/5~1/4。底摩擦耗散主要发生莫桑比克海峡和马达加斯加岛南北部, 其中莫桑比克海峡M2 (S2)分潮的底摩擦耗散为1.762GW (0.460GW), 占其底部总耗散的43.74% (39.72%)。
张华 , 温茜茜 , 彭世球 . 莫桑比克海峡及其邻近海区正压潮流数值模拟与能量收支分析*[J]. 热带海洋学报, 2021 , 40(2) : 7 -16 . DOI: 10.11978/2020057
The Mozambique Strait and its adjacent coastal area are one of the areas with the strongest tidal current and energy dissipation in the world. In this study, the high-resolution MIT general circulation model (MITgcm) is used to simulate the barotropic current in this area, and the characteristics of tidal energy flux and dissipation are analyzed. The results show that the tidal waves in the Mozambique Strait and its adjacent coastal area are dominated by the semidiurnal tide while the diurnal tide can be ignored. The M2 barotropic tide forms an anticlockwise rotary tidal system and a clockwise rotary system, and the S2 barotropic tide forms an anticlockwise rotary tidal system only. The M2 and S2 barotropic tidal currents in the Mozambique Strait and the southern part of Madagascar are counter-clockwise, and those north of Madagascar and other local areas are clockwise. The current velocity is large in the strait and over rough topography. The tidal energy mainly divergences at the east boundary while most of that convergences at the Mozambique Strait along the northern part of Madagascar Island. The tidal energy flux of M2 (S2) barotropic tide passing through the northern part of Madagascar Island and the Mozambique Strait is 156.86 GW (40.53 GW) and 148.07 GW (36.05 GW), respectively. The dissipation induced by bottom friction mainly occurs in the Mozambique Strait and the south and north of Madagascar Island. The bottom friction dissipation of M2 (S2) barotropic tide is 1.762 GW (0.460 GW) in the Mozambique Strait, accounting for 43.74% (39.72%) of the total dissipation in the water column.
图1 莫桑比克海峡及其邻近海区地形分布、验潮站站位分布和海流示意图黑色三角形和数字表示站位和站位号; 绿色带箭头实线表示海流及其方向; 莫桑比克海峡的绿色虚线箭头显示了涡流传播的影响。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 1 Bathymetry and tidal station distributions used. Also in the diagram are currents in Mozambique Strait and its adjacent coastal area The stations are represented by black triangles; The currents are represented by green solid lines; Dashed arrow in the Mozambique Strait shows the effect of eddy propagation |
表1 模式结果与验潮站分析结果的对比Tab. 1 Comparison between model results and tide station analysis results |
编号 | 站名 | 南纬 | 东经 | M2 | S2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
振幅/cm | 迟角/(°) | 振幅/cm | 迟角/(°) | ||||||||
观测 | 模拟 | 观测 | 模拟 | 观测 | 模拟 | 观测 | 模拟 | ||||
1 | Mobasa | 4°04′ | 39°39′ | 104.46 | 86.53 | 25.99 | 35.70 | 51.39 | 41.27 | 64.88 | 39.10 |
2 | Dar Es Salaam | 6°49′ | 39°17′ | 107.07 | 96.25 | 29.29 | 38.86 | 52.74 | 46.12 | 70.04 | 43.09 |
3 | Praslin | 4°21′ | 55°46′ | 35.71 | 40.92 | 11.61 | 18.10 | 15.77 | 17.27 | 52.36 | 24.53 |
4 | Port Victoria | 4°37′ | 55°28′ | 40.22 | 43.66 | 12.21 | 18.90 | 17.77 | 18.24 | 52.37 | 25.12 |
5 | Pt. La Rue | 4°40′ | 55°32′ | 39.68 | 43.67 | 14.18 | 18.60 | 17.68 | 18.14 | 51.78 | 24.79 |
6 | Lamu | 2°16′ | 40°54′ | 98.47 | 81.86 | 32.28 | 35.25 | 48.12 | 38.98 | 73.79 | 38.80 |
7 | Nosy Be | 13°24′ | 48°18′ | 108.42 | 101.50 | 22.30 | 37.28 | 56.41 | 48.02 | 62.77 | 40.21 |
8 | Zanzibar | 6°09′ | 39°11′ | 120.59 | 127.61 | 25.43 | 82.74 | 60.90 | 55.43 | 64.65 | 93.20 |
9 | Dzaoudzi | 12°47′ | 45°16′ | 104.82 | 91.62 | 27.16 | 36.37 | 53.27 | 43.47 | 67.52 | 38.62 |
10 | Reunion | 20°56′ | 55°17′ | 17.84 | 22.98 | 282.83 | 341.79 | 9.11 | 7.43 | 297.89 | 292.63 |
11 | Durban | 29°52′ | 31°03′ | 55.81 | 52.86 | 44.36 | 65.91 | 31.30 | 24.20 | 76.07 | 49.64 |
12 | Port Elizabeth | 33°58′ | 25°38′ | 52.41 | 38.86 | 43.72 | 71.91 | 27.17 | 18.11 | 69.86 | 40.47 |
15 | Pemba | 12°58′ | 40°29′ | 113.43 | 98.36 | 29.12 | 40.90 | 57.49 | 47.78 | 71.11 | 42.71 |
16 | Nacala | 14°28′ | 40°41′ | 102.26 | 99.85 | 28.55 | 42.81 | 59.67 | 48.82 | 66.39 | 43.84 |
r | 0.97 | 0.99 | 0.99 | 0.98 | |||||||
RMSE | 10.32 | 25.31 | 7.45 | 26.63 |
注: r为相关系数, RMSE为均方根误差 |
图2 正压潮模式模拟结果与验潮站观测数据的散点图a. 分潮M2振幅; b. 分潮S2振幅; c. 分潮M2迟角; d. 分潮S2迟角(迟角以格林尼治时间为时间基准)。r为相关系数, RMSE为均方根误差 Fig. 2 Scatter diagrams of barotropic model results and tidal station data The amplitudes of tides (a) M2 and (b) S2 (units: cm); phase of tides (c) M2 and (d) S2 (phase based on Greenwich mean time) |
图3 潮汐类型分布图中色标值表示: 0~0.5为规则半日潮, 0.5~2.0为不规则半日潮, 2.0~4.0为不规则全日潮, > 4.0为规则全日潮。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 3 Distribution of tidal constituents The color scale: 0 ~ 0.5 for regular semidiurnal tide, 0.5 ~ 2.0 for irregular semidiurnal tide, 2.0 ~ 4.0 for irregular diurnal tide, and > 4.0 for regular diurnal tide |
图4 莫桑比克海峡及其附近海区的同潮图a. M2分潮的振幅和迟角; b. S2分潮的振幅和迟角。黑色实线表示振幅(单位: cm); 色柱表示迟角(以格林尼治时间为时间基准, 单位: °)。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 4 Co-tidal charts in the Mozambique Strait and its adjacent coastal area (a) M2 and (b) S2 constituents. The black solid line indicates the amplitudes (units: cm) and the color indicates phase (based on Greenwich mean time) |
图5 表层潮流椭圆分布a. M2分潮; b. S2分潮。色标表示椭圆旋转率, 其中正值(红色)表示潮流椭圆逆时针旋转, 负值(蓝色)表示潮流椭圆顺时针旋转。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 5 Elliptical maps of surface tidal current (a) M2 and (b) S2 constituents. The color indicates the rotation rate of ellipse. Positive values (red) indicate counterclockwise rotation of the tidal current ellipse, and negative values (blue) indicate clockwise rotation of the tidal current ellipse |
图6 莫桑比克海峡及其附近海区M2分潮(a, b)和S2分潮(c, d)的潮能通量矢量分布a, c: 模式结果; b, d: OTIS计算结果。箭头和断面附近的数值表示通过该断面的潮能通量, 正值表示纬向向东或经向向北, 负值则相反。A1、A2、A3和A4断面的位置分别为16°12′S、46°E、14°S、49°18′E Fig. 6 Tidal energy flux in the Mozambique Strait and its adjacent coastal area Model results (a) and OTIS (b) calculated tidal energy flux distributions of M2 constituent. Model results (c) and OTIS (d) calculated tidal energy flux distribution of S2 constituent. The value near the section indicates the tidal energy flux through the section. Positive value indicates eastward or northward transport, and negative value is the opposite. Sections A1, A2, A3, and A4 are located along 16°12′S, 46°E, 14°S, and 49°18′E, respectively |
图7 莫桑比克海峡及其附近海区潮能底摩擦耗散分布(采用对数log10色标)a. M2分潮; b. S2分潮。红色方框为马达加斯加岛北部, 黑色方框为莫桑比克海峡, 黄色方框为马达加斯加岛南部。方框内数值表示该区域的潮能耗散值, 图内最上面的数字是表示整个研究区域的耗散值(单位: GW)。 Fig. 7 Tidal energy dissipation induced by bottom friction in the Mozambique Strait and its adjacent coastal area (logarithmic (log10) scale is used here) (a) M2 and (b) S2 constituents. The red box is the north of Madagascar, the black box is the Mozambique Strait, and the yellow box is the south of Madagascar. The value in the box represents the tidal energy dissipation value in this area, the number in the top of figure represents the dissipation value of the whole study area (units: GW) |
[1] |
陈元杰, 程鹏, 2020. 东中国海潮能通量与耗散的数值模拟分析[J]. 厦门大学学报(自然科学版), 59(1):61-70.
|
[2] |
方国洪, 曹德明, 黄企洲, 1994. 南海潮汐潮流的数值模拟[J]. 海洋学报, 16(4):1-12 (in Chinese).
|
[3] |
李蔷, 高郭平, 安佰超, 等, 2018. 白令海峡及其邻近海域潮汐潮能数值模拟[J]. 极地研究, 30(1):1-13.
|
[4] |
刘谊, 王晓玮, 彭世球, 2018. 印度尼西亚海内潮生成及传播过程研究[J]. 热带海洋学报, 37(2):1-9.
|
[5] |
罗丹, 2015. 渤、黄、东海潮汐潮流数值模拟研究[D]. 上海: 上海海洋大学.
|
[6] |
孟云, 谢蓉, 2019. 渤海潮流、潮能通量和耗散的数值模拟[J]. 上海船舶运输科学研究所学报, 42(1):70-77.
|
[7] |
佟景全, 雷方辉, 毛庆文, 等, 2010. 不考虑局地引潮势的南海正压潮能通量与潮能耗散[J]. 热带海洋学报, 29(3):1-9.
|
[8] |
王斌, 2010. 乐清湾潮能和潮能通量的数值研究[D]. 杭州: 浙江大学.
|
[9] |
夏综万, 1993. 介绍一种潮流椭圆要素的计算方法[J]. 海洋信息, (11):14 (in Chinese).
|
[10] |
张学庆, 王兴, 刘睿, 等, 2016. 辽河口潮能通量与潮能耗散的数值研究[J]. 海洋环境科学, 35(1):20-26, 67.
|
[11] |
周相乾, 胡松, 张瑜, 2019. 南极布兰斯菲尔德海峡正压潮数值模拟[J]. 极地研究, 31(1):56-68.
|
[12] |
朱怀鑫, 俎婷婷, 李健, 等, 2018. 基于高频地波雷达观测的粤西近海潮流潮能分析[J]. 热带海洋学报, 37(5):25-32.
|
[13] |
朱学明, 刘桂梅, 2012. 渤海、黄海、东海潮流、潮能通量与耗散的数值模拟研究[J]. 海洋与湖沼, 43(3):669-677.
|
[14] |
朱学明, 宋德海, 鲍献文, 等, 2014. 西北太平洋的潮能通量与耗散[J]. 热带海洋学报, 33(1):1-9.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
/
〈 | 〉 |