香港牡蛎在综合养殖池塘育肥期间不同组织的碳、氮稳定同位素周转
周晖(1978—), 男, 广西玉林市人, 博士, 从事水产动物生理生态学研究。email: |
Copy editor: 姚衍桃
收稿日期: 2022-08-03
修回日期: 2022-10-24
网络出版日期: 2022-12-08
基金资助
国家海洋局“十三五”海洋经济创新发展示范市项目(XM-202012-03B2)
Stable carbon and nitrogen isotope turnover of different tissues of the Hongkong oyster at the fattening stage in a polyculture pond
Copy editor: YAO Yantao
Received date: 2022-08-03
Revised date: 2022-10-24
Online published: 2022-12-08
Supported by
State Oceanic Administration “The Thirteenth Five-Year Plan” Marine Economic Innovation and Development Demonstration City Project(XM-202012-03B2)
本研究采集了在鱼虾混养池塘育肥的香港牡蛎样品, 监测牡蛎体质量、软体组织质量、出肉率, 以及闭壳肌、外套膜和鳃的δ13C和δ15N值随育肥时间的变化, 计算了牡蛎3种软体组织的代谢率常数m和碳、氮稳定同位素周转时间, 为开展综合养殖池塘生态系统的食物网研究提供基础数据。结果显示: 经过44d的育肥, 虽然牡蛎体质量无显著增加(P>0.05), 但软体组织质量和出肉率显著上升(P<0.05)。育肥期间牡蛎外套膜、闭壳肌和鳃的生长与整个软体组织的生长基本同步。牡蛎各组织的δ13C和δ15N值在育肥16d后就显著减小(P<0.05)。比较同一天采集的组织, 牡蛎闭壳肌的δ13C和δ15N值都显著大于外套膜和鳃(P<0.05), 而外套膜和鳃的δ13C和δ15N值则无显著差异(P>0.05)。闭壳肌和外套膜的代谢周转常数m为0, 其碳、氮稳定同位素周转完全由生长决定, 因此闭壳肌和外套膜碳、氮稳定同位素的周转时间相同, t50和t95分别为40.77d和176.22d。鳃的碳、氮稳定同位素代谢周转常数m分别为1.09%·d-1和1.76%·d-1, 说明鳃的碳、氮稳定同位素周转还受到代谢的影响; 鳃氮稳定同位素周转的t50和t95分别为20.02d和86.53d, 而碳稳定同位素周转的t50和t95分别为24.85d和107.42d。在本研究的育肥期间, 香港牡蛎闭壳肌、外套膜和鳃的δ13C和δ15N值具有鲜明特点, 并且随育肥时间延长呈现出迅速且有规律的变化, 表明香港牡蛎能够反映池塘的碳、氮稳定同位素基本特征, 适合作为中、长时间尺度的基线生物用于综合养殖池塘生态系统的食物网研究。
周晖 , 汤保贵 , 伍栩民 , 彭梓峰 , 钟培贵 , 于鸽 , 孔繁森 . 香港牡蛎在综合养殖池塘育肥期间不同组织的碳、氮稳定同位素周转[J]. 热带海洋学报, 2023 , 42(4) : 125 -132 . DOI: 10.11978/2022175
In order to provide basic data for the study of food webs in the polyculture pond ecosystem, the Hongkong oyster samples were collected during fattening stage in a fish-shrimp polyculture pond, and the oyster body mass, soft tissue mass, meat yield, and changes in δ13C and δ15N values of adductor muscle, mantle and ctenidia during the fattening stage were monitored; the metabolic rate constant m and stable carbon and nitrogen isotope turnover time of three soft tissues were calculated. The results showed that after 44 days of fattening, although the body mass of oysters did not increase significantly (P>0.05), the soft body tissue mass and meat yield increased significantly(P<0.05). The growth of mantle, adductor muscle and ctenidia were basically synchronized with the growth of whole soft tissue. The δ13C and δ15N values of oyster tissues decreased significantly (P<0.05) after 16 days of fattening (P<0.05). Comparing the δ13C and δ15N values of the three tissues collected on the same day, the values of adductor muscle were significantly larger than those of mantle and ctenidia (P<0.05), while there was no significant difference between values of mantle and ctenidia (P>0.05). The metabolic turnover constant m of adductor muscle and mantle was zero, and their stable carbon and nitrogen isotope turnover were completely determined by growth; therefore the turnover time of stable carbon and nitrogen isotope turnover in adductor muscle and mantle were the same, t50 and t95 were 40.77d and 176.22d, respectively. The stable carbon and nitrogen isotope metabolic turnover constant m of ctenidia were 1.09%·d-1 and 1.76%·d-1, respectively, indicating that the stable carbon and nitrogen isotope turnover of ctenidia were also affected by metabolism. The t50 and t95 of ctenidia stable nitrogen isotope turnover were 20.02d and 86.53d, respectively, while the t50 and t95 of stable carbon isotope turnover were 24.85d and 107.42d, respectively. During the fattening stage of this study, the δ13C and δ15N values of the adductor muscle, mantle and ctenidia of Hongkong oyster had distinct characteristics, and showed rapid and regular changes with the extension of the fattening time, which indicated the Hongkong oyster could reflect the basic characteristics of stable carbon and nitrogen isotopes in polyculture pond, and is suitable as a medium and long time scale baseline organism for food web research in polyculture pond ecosystem.
图1 育肥期间香港牡蛎的生理指标变化图中数据为软体组织质量均值(n=27), 上标不同字母表示差异显著(P<0.05) Fig. 1 Changes of physiological index of oyster during the fattening time. The data in the figure are the means of soft body weight, and different letters in the superscript indicate significant differences (P<0.05) |
表1 香港牡蛎3种组织的δ13C和δ15N随育肥时间的变化Tab. 1 Changes of δ13C and δ15N in three tissues of oyster with fattening time |
项目 | 初始样品 | 育肥8d | 育肥16d | 育肥44d | |
---|---|---|---|---|---|
外套膜 | δ15N/‰ | 9.84±0.40c | 9.70±0.82c | 8.59±0.53b | 7.38±0.22a |
δ13C/‰ | -21.81±1.21c | -22.09±0.94c | -22.38±0.81b | -24.45±0.39a | |
闭壳肌 | δ15N/‰ | 10.93±0.23c | 10.70±0.73c | 9.71±0.76b | 8.64±0.50a |
δ13C/‰ | -20.07±0.17c | -20.45±0.53bc | -20.97±0.79b | -22.16±0.63a | |
鳃 | δ15N/‰ | 9.97±0.17c | 9.50±0.69c | 8.24±0.34b | 7.34±0.51a |
δ13C/‰ | -21.28±0.48c | -22.08±0.57bc | -22.64±0.33b | -24.00±0.65a |
注: 表中碳氮稳定同位素数据为各次采样全部牡蛎样品的平均值±标准差(n=27), 同一行数据上标无相同字母表示差异显著(p<0.05) |
表2 同一时间牡蛎不同组织的δ13C和δ15N比较Tab. 2 Comparison of δ13C and δ15N of different tissues of oyster at the same time |
项目 | 初始样品 | 育肥8d | 育肥16d | 育肥44d | |
---|---|---|---|---|---|
δ15N/‰ | 外套膜 | 9.84±0.40a | 9.70±0.82a | 8.59±0.53a | 7.38±0.22a |
闭壳肌 | 10.93±0.23b | 10.70±0.73b | 9.71±0.76b | 8.64±0.50b | |
鳃 | 9.97±0.17a | 9.50±0.69a | 8.24±0.34a | 7.34±0.51a | |
δ13C/‰ | 外套膜 | -21.81±1.21a | -22.09±0.94a | -22.38±0.81a | -24.45±0.39a |
闭壳肌 | -20.07±0.17b | -20.45±0.53b | -20.97±0.79b | -22.16±0.63b | |
鳃 | -21.28±0.48a | -22.08±0.57a | -22.64±0.33a | -24.00±0.65a |
注: 表中碳氮稳定同位素数据为各次采样全部牡蛎样品的平均值±标准差(n=27), 同一列δ13C 或 δ15N数据上标无相同字母表示差异显著(P<0.05) |
图3 育肥过程中牡蛎3种组织δ15N值变化的迭代非线性回归Fig. 3 Iterative nonlinear regression of δ15N changes in three tissues of oyster during fattening period |
[1] |
白富进, 2010. 湛江港近江牡蛎中碳氮同位素时空分布及其对无机氮响应的初步研究[D]. 湛江: 广东海洋大学: 5-6.
|
[2] |
才让卓玛, 2015. 香港牡蛎产地溯源指纹信息筛选的研究[D]. 湛江: 广东海洋大学: 4-5.
|
[3] |
贾真, 佘智彩, 彭业韶, 等, 2019. 香港牡蛎不同育肥方式的育肥效果[J]. 水产科学, 38(4): 514-520.
|
[4] |
刘小琳,
|
[5] |
陆亚楠, 张瑞, 张虎, 等, 2022. 应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化[J]. 海洋学报, 44(2): 1-10.
|
[6] |
潘英, 李坚明, 黄伟德, 等, 2021. 广西牡蛎产业现状分析及发展策略[J]. 南方农业学报, 52(9): 2608-2618.
|
[7] |
祁剑飞, 宁岳, 曾志南, 等, 2015. 冬季单体牡蛎池塘育肥初步实验[J]. 福建水产, 37(5): 406-410.
|
[8] |
权伟, 应苗苗, 周庆澔, 等, 2018. 基于稳定碳同位素技术的养殖贝类碳源分析[J]. 上海海洋大学学报, 27(2): 175-180.
|
[9] |
徐军, 张敏, 谢平, 2010. 氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 22(1): 8-20.
|
[10] |
严雪瑜, 覃波忠, 黄伟德, 等, 2021. 不同育肥海区香港牡蛎的营养评价及基因表达相关性分析[J]. 食品工业科技, 43(13): 276-283.
|
[11] |
於锋, 罗帮, 陈雪芬, 等, 2016. 广西茅尾海的香港巨牡蛎(Crassostrea hongkongensis)在不同养殖区的性腺发育变化[J]. 渔业科学进展, 37(3): 134-142.
|
[12] |
于瑞海, 李海昆, 2021. 我国三倍体牡蛎育苗、养殖现状及发展对策[J]. 科学养鱼, (11): 2-4 (in Chinese).
|
[13] |
周晖, 陈刚, 古滨河, 等, 2013. 饲料中的玉米蛋白质对军曹鱼幼鱼蛋白质生长的贡献率[J]. 动物营养学报, 25(11): 2633-2642.
|
[14] |
邹琰, 刘广斌, 张天文, 等, 2021. 我国太平洋牡蛎主要养殖模式[J]. 科学养鱼, (11): 63-64 (in Chinese).
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
/
〈 | 〉 |