秋季登陆广东热带气旋特征变化及机制分析
韩鼎妍(1999—), 女, 贵州省清镇市人, 硕士研究生, 从事物理海洋学研究。email: |
Editor: 孙翠慈
收稿日期: 2023-04-06
修回日期: 2023-06-09
网络出版日期: 2023-06-19
基金资助
国家自然科学基金(42276019)
广东省粤西热带海洋生态环境野外观测研究站项目
Variation and mechanisms of autumn tropical cyclones landed in Guangdong
Editor: SUN Cuici
Received date: 2023-04-06
Revised date: 2023-06-09
Online published: 2023-06-19
Supported by
National Natural Science Foundation of China(42276019)
Guangdong Science and Technology Plan Project (Observation, Tropical Marine Environment in Yuexi)
基于1949—2021年中国气象局热带气旋最佳路径数据集和登陆热带气旋数据集, 对秋季登陆广东热带气旋(tropical cyclone, TCs)的时空特征和可能机制进行分析, 并与夏季进行对比。结果表明: 近73年共76个TCs秋季登陆广东, 占登陆总数的28.5%, 以强台风和超强台风占主, 且平均最大强度强于夏季。相比夏季, 秋TCs更大比例(72.4%)生成于西北太平洋, 生成经纬度偏南、偏东; 秋TCs的年均破坏潜力指标(power dissipation index, PDI)可达0.4×107m3·s−2, 与夏季相当; 秋TCs登陆后比夏季更快消亡, 移速更慢, PDI较小。秋TCs登陆数量长期变化呈下降趋势且下降速率与夏季相当, 登陆强度上升且上升速率为夏季1.8倍, 移速减缓速率为夏季2.5倍, PDI下降速率明显弱于夏季。不同于夏季登陆TCs在拉尼娜年增多, 秋TCs更易在厄尔尼诺年登陆广东; 登陆广东秋TCs数与上一年冬春季厄尔尼诺-南方涛动 (El Niño-Southern Oscillation,ENSO)指数相关系数达到0.3, 并对后一年ENSO具有指示作用。秋TCs登陆频数与太平洋年代际振荡(Pacific Decadal Oscillation, PDO)指数显著相关, 1977—1996和1997—2016暖冷两个位相期, 相关系数分别为−0.51和0.68。对比有无秋TCs的环境场, 发现南海北部海温暖异常时, 其西北侧激发的气旋性引导气流利于TCs登陆广东。
韩鼎妍 , 李敏 , 胡睿 , 谢玲玲 . 秋季登陆广东热带气旋特征变化及机制分析[J]. 热带海洋学报, 2024 , 43(1) : 64 -78 . DOI: 10.11978/2023044
Using the track data of landed tropical cyclones (TCs) during 1949—2021 from Shanghai Typhoon Institute of China Meteorological Administration, this study analyzes the variation and mechanism of TCs landed in autumn in Guangdong area, and compares with the results in summer. The results show that a total of 76 TCs landed in Guangdong in autumn during the past 73 years, accounting for 28.5% of the landed TCs in whole year. The landed TCs in autumn (ALTCs) are mostly in categories of strong typhoon and super typhoon, and the mean peak intensities are stronger than those in summer. 72.4% of the ALTCs generated in the Western North Pacific, a higher portion than summer landed TCs and the average latitude and longitude of TCs generation move southward and eastward. The yearly power dissipation index (PDI) of autumn TCs reaches 0.4×107m3·s−2, comparable to that of summer TCs; during landfall to dissipation, the average duration time of autumn TCs is less, the translation speed is slower and PDI is less than those of summer TCs. In long-term variations, the declining trend and decrease rate of the number of ALTCs is similar to that in summer, while the landing intensity of ALTCs increases with a rate 1.8 times higher than that in summer. The translation speed of ALTCs slows down but with a rate 2.5 times lower than summer TCs, the PDI of ALTCs shows a weaker decreasing trend than summer TCs. Unlike more TCs landed in summer in La Niña year, more ALTCs appeared in El Niño years. The number of ALTCs is related to the ENSO (El Niño-Southern Oscillation) index in previous winter and spring with correlation coefficient of about 0.3. It can be used as an indicator for next-year ENSO prediction. In decadal variability, the correlation coefficients between the number of ALTCs and the PDO (Pacific Decadal Oscillation) index, were -0.51 and 0.68 in the warm phase (1977—1996) and cold phase (1997—2016), respectively. The composite analysis shows that ALTCs can occur with a warm sea surface temperature anomaly in the northern South China Sea, which induced cyclonic atmospheric circulation in the South China and favors TCs landed in Guangdong.
表1 1949—2021年4—11月西北太平洋和南海生成TCs和登陆广东TCs的数量及比例Tab.1 Generated and landed TCs Numbers in months from April to November and their proportion to total TCs in whole years in the West North Pacific and the South China Sea during 1949—2021 |
月份 | 生成TCs | 登陆TCs | 登陆/生成比 | ||
---|---|---|---|---|---|
个数 | 占总数比 | 个数 | 占总数比 | ||
4月 | 57 | 4.50% | 2 | 0.80% | 3.50% |
5月 | 96 | 7.70% | 7 | 2.60% | 7.30% |
6月 | 177 | 14.10% | 43 | 16.10% | 24.30% |
7月 | 380 | 30.30% | 68 | 25.50% | 17.90% |
8月 | 545 | 43.40% | 71 | 26.60% | 13.00% |
9月 | 442 | 35.20% | 57 | 21.40% | 12.90% |
10月 | 323 | 25.70% | 16 | 6.00% | 5.00% |
11月 | 200 | 15.90% | 3 | 1.10% | 1.50% |
总计 | 1255 | 267 | 21.30% |
图1 1949—2021年秋季(a)和夏季(b)登陆广东TCs的登陆强度(蓝色柱)及最大强度(红色柱)在不同等级的概率分布Fig. 1 Distribution of landing intensities (blue column) and maximum intensities (red column) of TCs landed in Guangdong in autumn (a) and summer (b) during 1949—2021 |
图8 全年(黑色)、夏季和秋季平均登陆强度和最大强度年际变化a. 登陆近中心最大风速; b. 平均中心最大风速; c. 登陆中心气压; d. 最低中心气压; 虚线表示线性趋势 Fig. 8 Interannual variability of landed TCs’ average intensities and maximum intensities in the whole year (black), autumn (red) and summer (grey). Dashed line represents the linear trend; (a) average landing wind speed; (b) average maximum wind speed; (c) landing pressure; (d) minimum pressure |
图11 全年(黑色)、秋季(红色)和夏季(灰色)登陆广东TCs登陆后活动特征的年际变化a. 消亡时间; b. 登陆后移动速度; c. 登陆后PDI; 虚线表示线性趋势 Fig. 11 Interannual variability of landed TCs’ active characteristics after landed in the whole year (black), autumn (red) and summer (grey), (a. Duration from landfall to dissipation; b. the translation speed after landed; c. the PDI after landed). Dashed lines represent the linear trend |
图13 标准化的(a) 全年(黑线)、秋季(红线)和夏季(灰线)TCs频数与ENSO指数ONI(黑色虚线)的年际变化; (b)秋季(SON)登陆TCs频数与不同季节ENSO指数的超前滞后相关系数, 通过90%显著性检验的相关系数用实心点表示Fig. 13 (a) Variation of standardized landed TCs numbers in the whole year (black line), autumn (red line) and summer (grey line), and annual-mean ENSO index (black dashed line); (b) lag correlations of autumn (SON) landed TCs numbers with ENSO index in each season, the correlation coefficients that pass the 90% significance test are represented by solid dots |
图14 全年(黑线)、秋季(红线)和夏季(灰线)TCs频数与年平均PDO指数(黑色虚线)Fig. 14 The landing TCs numbers in the whole year (black line), autumn (red line) and summer (grey line), and the PDO index (black dashed line) |
表2 TCs频数与不同阶段PDO指数的相关性Tab. 2 The correlation of landing TCs numbers and the PDO index in different phases |
PDO不同位相期 | 全年TCs | 秋季TCs | 夏季TCs |
---|---|---|---|
1954—2016 | r = 0.37, P<0.01 | r = 0.28, P=0.03 | r = 0.33, P<0.01 |
1954—1976(冷) | r = 0.45, P=0.03 | r =-0.10, P=0.63 | r = 0.41, P=0.06 |
1977—1996(暖) | r = 0.24, P=0.32 | r =-0.51, P=0.02 | r = 0.51, P=0.02 |
1997—2016(冷) | r = 0.44, P=0.05 | r = 0.68, P<0.01 | r = 0.21, P=0.39 |
图16 秋季异常环境背景场分析a.有秋登陆TCs; b.无秋登陆TCs; 填色: 海表面温度异常; 矢量箭头: 大环境引导气流; 实线框为本文研究区域; 审图号为GS(2016)2556号 Fig. 16 The composite environmental background in autumn (colors: sea surface temperature anomaly; vectors: large-scale steering flow), the solid line frame represents our study area (a, having autumn landed TCs; b, no autumn landed TCs) |
表3 2003—2021年南海夏季风撤退时间Tab. 3 The time of the South China Sea summer monsoon withdrawal |
年份 | 结束时间 |
---|---|
2003 | 9月第4候(略偏早2候) |
2004 | 9月第4候(略偏早2候) |
2005 | 9月第6候(接近常年) |
2006 | 10月第2候(偏晚2候) |
2007 | 10月第3候(偏晚3候) |
2008 | 10月第2候(偏晚2候) |
2009 | 10月第3候(偏晚3候) |
2010 | 10月第5候(偏晚5候) |
2011 | 10月第3候(偏晚3候) |
2012 | 10月第2候(偏晚2候) |
2013 | 10月第4候(偏晚4候) |
2014 | 9月第6候(接近常年) |
2015 | 10月第2候(偏晚2候) |
2016 | 10月第6候(偏晚6候) |
2017 | 10月第5候(偏晚5候) |
2018 | 9月第5候(略偏早1候) |
2019 | 9月第5候(略偏早1候) |
2020 | 10月第6候(偏晚6候) |
2021 | 10月第5候(偏晚5候) |
[1] |
陈联寿, 丁一汇, 1979. 西太平洋台风概论[M]. 北京: 科学出版社.
|
[2] |
陈志伟, 康建成, 顾成林, 等, 2017. 近30年西北太平洋热带气旋的时空变化及与海洋上层热状态的关系[J]. 海洋科学, 41(8): 122-133.
|
[3] |
韩瑛, 伍荣生, 2008. 冷空气入侵对热带气旋发生发展的影响[J]. 地球物理学报, 51(5): 1321-1332.
|
[4] |
郝赛, 毛江玉, 2015. 西北太平洋与南海热带气旋活动季节变化的差异及可能原因[J]. 气候与环境研究, 20(4): 380-392.
|
[5] |
贺海晏, 简茂球, 宋丽莉, 等, 2003. 近50a广东登陆热带气旋的若干气候特征[J]. 气象科学, 23(4): 401-409.
|
[6] |
胡娅敏, 宋丽莉, 罗晓玲, 2011. 近58年登陆广东热带气旋位置和生成源地的变化[J]. 中山大学学报(自然科学版), 50(4): 113-120.
|
[7] |
刘赛赛, 张立凤, 张晓慧, 2017. 台风“彩虹”(1522)近海急剧加强的特征分析[J]. 气象科学, 37(4): 487-496.
|
[8] |
乔守文, 边志刚, 隋意, 等, 2019. 1980—2015年间北部湾海域热带气旋的变化及特征分析[J]. 广西科学, 26(6): 663-668.
|
[9] |
徐婉明, 邓伟铸, 2020. 广东省登陆热带气旋的时空分布特征及其影响[J]. 海洋预报, 37(2): 11-18.
|
[10] |
晏宏, 孙立广, 刘晓东, 等, 2010. 近50年来南海西沙群岛海域气候异常的ENSO效应[J]. 热带海洋学报, 29(5): 29-35.
|
[11] |
杨宝琛, 罗亚丽, 姜晓玲, 2022. 热带气旋对1975-2018年暖季中国极端降水气候态、变化趋势及其与温度关系的影响研究[J]. 热带气象学报, 38(3): 397-409.
|
[12] |
殷成团, 张金善, 熊梦婕, 等, 2019. 我国南海沿海台风及暴潮灾害趋势分析[J]. 热带海洋学报, 38(1): 35-42.
|
[13] |
战志敏, 郗洋, 庞旭龙, 等, 2013. 西北太平洋热带气旋路径特征分析[J]. 安徽农业科学, 41(8): 3512-3515+3586 (in Chinese).
|
[14] |
张翔, 武亮, 皇甫静亮, 等, 2017. 西北太平洋季风槽的季节和年际变化特征及其与热带气旋生成大尺度环境因子的联系[J]. 气候与环境研究, 22(4): 418-434.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
/
〈 | 〉 |