珊瑚礁

全球变暖和核电站温排水对大亚湾滨珊瑚钙化的影响

展开
  • 中国科学院边缘海地质重点实验室, 中国科学院南海海洋研究所, 广东 广州 510301
陈天然(1981—), 男, 江苏省镇江市人,博士, 主要从事珊瑚高分辨率环境记录与生态响应研究。E-mail: chentian-ran2008@gmail.com

收稿日期: 2009-10-25

  修回日期: 2009-11-22

  网络出版日期: 2011-05-04

基金资助

中国科学院战略性先导科技专项(XDA05080300); 国家自然科学基金重点项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905); 国家科技支撑计划项目(2006BAB19B03); 中国科学院南海海洋研究所青年人才领域前沿项目(SQ201009); 中国科学院边缘海地质重点实验室开放研究基金项目(MSGL09-01)

Effect of global warming and thermal effluents on calcification of the Porites coral in Daya Bay, northern South China Sea

Expand
  • CAS Key laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China
陈天然(1981—), 男, 江苏省镇江市人,博士, 主要从事珊瑚高分辨率环境记录与生态响应研究。E-mail: chentian-ran2008@gmail.com

Received date: 2009-10-25

  Revised date: 2009-11-22

  Online published: 2011-05-04

Supported by

中国科学院战略性先导科技专项(XDA05080300); 国家自然科学基金重点项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905); 国家科技支撑计划项目(2006BAB19B03); 中国科学院南海海洋研究所青年人才领域前沿项目(SQ201009); 中国科学院边缘海地质重点实验室开放研究基金项目(MSGL09-01)

摘要

全球变暖引起的珊瑚白化和珊瑚钙化能力减弱, 对全球珊瑚礁生态系统构成了严重威胁。在这样的背景下, 相对高纬度海域石珊瑚(Scleractinia)群落被认为是珊瑚物种延续的最后避难所。通过分析大亚湾海域持续生长46年(1962—2007年)的滨珊瑚Porites骨骼参数(生长率、密度和钙化率), 研究相对高纬度海域石珊瑚钙化对全球变暖以及人为热排放的响应模式。结果显示, 滨珊瑚平均生长率、密度和钙化率分别为0.97cm•a-1(0.41—1.32cm•a-1)、1.45g•cm-3(1.17—1.65g•cm-3)和1.40g•(cm2•a)-1[0.59—1.93g•(cm2•a)-1]。海表温度(SST)是该海域石珊瑚钙化的主导控制因素。1962—1993年, 全球变暖、SST上升对大亚湾滨珊瑚生长有缓解冬季低温胁迫、促进骨骼钙化的作用。然而, 随着SST持续上升以及大亚湾核电站的运行, 全球变暖与核电站温排水对滨珊瑚骨骼形成高密度带造成抑制作用, 导致自1993年以后滨珊瑚骨骼生长率和钙化率呈下降趋势, 并出现1997—2001年和2006年的低谷。因此, 全球变暖, 至少是初期, 对相对高纬度海域石珊瑚钙化乃至珊瑚礁发育是有促进作用的。但随着SST持续上升, 加上ENSO等极端高温事件以及人类活动的影响, 可能在未来会出现相对高纬度海域的大面积石珊瑚白化。

本文引用格式

陈天然,余克服,施祺,陈特固,王嵘 . 全球变暖和核电站温排水对大亚湾滨珊瑚钙化的影响[J]. 热带海洋学报, 2011 , 30(2) : 1 -9 . DOI: 10.11978/j.issn.1009-5470.2011.02.001

Abstract

Mass coral bleaching and decreased calcification triggered by global warming have seriously threatened the coral reef ecosystems worldwide. Relative high-latitude coral communities may have the potential to act as regions of refugia for many coral species in the face of future global warming. Skeletal parameters (growth rate, density and calcification) of a 46-yr-long (1962-2007) Porites coral were analyzed, in order to investigate the responses of coral calcification (carbonate depositional processes) in high-latitude regions to increasing sea surface temperature (SST) associated with global warming and anthropogenic thermal discharge. Results showed that annual-mean growth rate, density and calcification were 0.97 cm•yr-1 (0.41?1.32 cm•yr-1), 1.45 g•cm-3 (1.17-1.65 g•cm-3) and 1.40 g•(cm2•yr)-1 [0.59?1.93 g•(cm2•yr)-1], respectively. SST is the major control effect of coral growth in this area. At the initial stage of global warming (1962?1993), increased SST al-leviated seasonal low temperature stress and promoted coral calcification. When SST increased continuously combined with nuclear power stations operation in Daya Bay, however, synthesized high SST in summer stressed coral skeletogenesis, and caused decreased growth and calcification rates after 1993, as well as relatively low levels of growth and calcification rates during 1997-2001 and 2006. Therefore, global warming, at least in the beginning, promoted coral calcification and reef development at high-latitude areas, whereas mass coral bleaching caused by continuously increasing SST, ENSO events and human activates, may happen in the future.

参考文献

[1]       MOBERG F, FOLKE C. Ecological goods and services of coral reef ecosystems [J]. Ecological Economics, 1999, 29(2): 215-233.

[2]       WILKINSON C. Status of coral reefs of the world: 2008[M]. Townsville, Australia: Australian Institute of Marine Science Press, 2008: 1-298.

[3]       HUGHES T P, BAIRD A H, BELLWOOD D R, et al. Climate change, human impacts, and the resilience of coral reefs [J]. Science, 2003, 301: 929-933.

[4]       PANDOLFI J M, BRADBURY R H, SALA E, et al. Global trajectories of the long-term decline of coral reef ecosystems [J]. Science, 2003, 301: 955-958.

[5]       HOEGH-GULDBERG O, MUMBY P J, HOOTEN A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318: 1737-1742.

[6]       WILKINSON C. Status of coral reefs of the world: 2000[M]. Townsville, Australia: Australian Institute of Marine Science Press, 2000: 1-361.

[7]       WILKINSON C. Status of coral reefs of the world: 2004[M]. Townsville, Australia: Australian Institute of Marine Science Press, 2004: 1-301.

[8]       HOEGH-GULDBERG O. Climate change, coral bleaching and the future of the world's coral reefs [J]. Mar Freshwater Res, 1999, 50: 839-866.

[9]       NORMILE D. Bringing coral reefs back from the living dead [J]. Science, 2009, 325: 559-561.

[10]    RIEGL B. Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa) [J]. Coral Reefs, 2003, 22: 433-446.

[11]    HALFAR J, GODINEZ-ORTA L, RIEGL B, et al. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions [J]. Coral Reefs, 2005, 24: 582-592.

[12]    SCHLEYER M H, KRUGER A, CELLIERS L. Long-term community changes on a high-latitude coral reef in the Greater St Lucia Wetland Park, South Africa [J]. Mar Pollut Bull, 2008, 56: 493-502.

[13]    黄晖, 马斌儒, 练健生, . 广西涠洲岛海域珊瑚礁现状及其保护策略研究[J]. 热带地理, 2009, 29(4): 307-312.

[14]    赵焕庭, 王丽荣, 宋朝景. 徐闻县西岸珊瑚礁存在与发展的条件[J]. 热带地理, 2008, 28(3): 234-241.

[15]    TAM T W, ANG JR P O. Repeated physical disturbances and the stability of sub-tropical coral communities in Hong Kong, China [J]. Aquatic Conserv: Mar Freshw Ecosyst, 2008, 18: 1005-1024.

[16]    徐恭昭. 大亚湾环境与资源[M]. 合肥: 安徽科学技术出版社, 1989: 1-5.

[17]    余克服, 王肇鼎, 练建生. 50年来大亚湾及周边地区气候变化趋势[M]//潘金培, 王肇鼎, 吴信忠. 中国科学院大亚湾海洋生物综合实验站研究年报(). 北京: 科学出版社, 2001: 1-9.

[18]    苏炳之. 广东澳头海产无脊椎动物初步调查[M]//寿振黄, 贾相刚. 动物生态及分类区系专业学术讨论会论文摘要汇编. 北京: 科学出版社, 1962: 15.

[19]    张元林, 邹仁林. 大亚湾浅水石珊瑚群落的研究[J]. 热带海洋, 1987, 6(1): 12-18.

[20]    温伟英, 邹仁林, 杜完成, . 大亚湾核电站温排水对石珊瑚群落的影响Ⅰ核电站运转前的石珊瑚群落[M]//潘金培, 蔡国雄. 中国科学院南海海洋研究所大亚湾海洋生物综合实验站研究年报(). 北京: 科学出版社, 1996: 18-22.

[21]    林昭进, 邱永松, 张汉华, . 大亚湾浅水石珊瑚的分布现状及生态特点[J]. 热带海洋学报, 2007, 26(3): 63-67.

[22]    陈天然, 余克服, 施祺, . 广东大亚湾石珊瑚群落的分布及动态变化[J]. 热带地理, 2007, 27(6): 493-498.

[23]    陈天然, 余克服, 施祺, . 大亚湾石珊瑚群落近25年的变化及其对2008年极端低温事件的响应[J]. 科学通报, 2009, 54(6): 812-820.

[24]    CARRICART-GANIVET J P, BARNES D J. Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density [J]. J Exp Mar Biol Ecol, 2007, 344: 67-72.

[25]    YU KE FU, ZHAO JIAN XIN, WEI GANG JIAN, et al. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators [J]. Palaeogeogr Palaeocl Palaeoecol, 2005, 218: 57-73.

[26]    LOUGH J M, BARNES D J. Possible relationships between environmental variables and skeletal density in a coral colony from the central Great Barrier Reef [J]. J Exp Mar Biol Ecol, 1990, 134: 221-241.

[27]    LOUGH J M, BARNES D J. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef [J]. J Exp Mar Biol Ecol, 1997, 211: 29-67.

[28]    LOUGH J M, BARNES D J. Environmental controls on growth of the massive coral Porites [J]. J Exp Mar Biol Ecol, 2000, 245: 225-243.

[29]    DODGE R E, LANG J C. Environmental correlates of hermatypic coral (Montastrea annularis) growth on the East Flower Gardens Bank, northwest Gulf of Mexico [J]. Limnol Oceanogr, 1983, 28(2): 228-240.

[30]    CARRICART-GANIVET J P. Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis [J]. J Exp Mar Biol Ecol, 2004, 302: 249-260.

[31]    聂宝符, 陈特固, 彭子成. 由造礁珊瑚重建南海西沙海区近220a海面温度序列 [J]. 科学通报, 1999, 44(7): 1885-1888.

[32]    余克服. 雷琼海区近40年海温变化趋势[J]. 热带地理, 2000, 20(2): 111-115.

[33]    NIE BAO FU, CHEN TE GU, LIANG MEI TAO, et al. Relationship between coral growth rate and sea surface temperature in the northern South China Sea during the past 100 years [J]. Sci China Ser D-Earth Sci, 1997, 40: 173-182.

[34]    OMATA T, SUZUKI A, KAWAHATA H, et al. Oxygen and carbon stable isotope systematics in Porites coral near its latitudinal limit: The coral response to low-thermal temperature stress [J]. Glob Planet Change, 2006, 53(1/2): 137-146.

[35]    ANTHONY K R N, CONNOLLY S R. Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime [J]. Limnol Oceanogr, 2007, 52(2): 716-726.

[36]    MARSHALL A T, CLODE P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral [J]. Coral Reefs, 2004, 23: 218-224.

[37]    COOPER T F, DE'ATH G, FABRICIUS K E, et al. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef [J]. Global Change Biol, 2008, 14: 529-538.

[38]    COOK C B, LOGAN A, WARD J, et al. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event [J]. Coral Reefs, 1990, 9: 45-49.

[39]    CELLIERS L, SCHLEYER M H. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa [J]. Mar Pollut Bull, 2002, 44: 1380-1387.

[40]    TANG DANLING, KESTER D R, WANG ZAODING, et al. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China [J]. Remote Sensing of Environment, 2003, 84: 506-515.

[41]    ZENG PING, CHEN HUIQUAN, AO BAICHUAN, et al. Transport of waste heat from a nuclear power plant into coastal water [J]. Coastal Engineering, 2002, 44: 301-319.

[42]    张敬怀, 肖瑜璋, 王华, . 大亚湾核电站邻近海域大型底栖生物群落结构分析[J]. 海洋环境科学, 2007, 26(6): 561-564.

[43]    刘胜, 黄晖, 黄良民, . 大亚湾核电站对海湾浮游植物群落的生态效应[J]. 海洋环境科学, 2006, 25(2): 9-12.

[44]    YU JING, TANG DANLING, WANG SUFEN, et al. Changes of water temperature and harmful algal bloom in the Daya Bay in the Northern South China Sea [J]. Marine Science Bulletin, 2007, 9(2): 25-33.

[45]    NEUDECKER S. Growth and survival of scleractinian corals exposed to thermal effluents at Guam [C]// GOMEZ E D, BIRKELAND C E, BUDDEMEIER R W. Manila: Proceedings of the 4th International Coral Reef Symposium, 1981: 173-180.

[46]    HUANG C C, HUNG T C, FAN K L. Nonbiological factors associating with coral bleaching events in the shallow water near the outlet of the third nuclear power plant in southern Taiwan [J]. Acta Oceanographica Taiwanica, 1991, 26: 20-35.

[47]    DEVILLIERS S, SHEN G T, NELSON B K. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters [J]. Geochim Cosmochim Ac, 1994, 58(1): 197-208.

[48]    DEVILLIERS S, NELSON B K, CHIVAS A R. Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures [J]. Science, 1995, 269: 1247-1249.

[49]    MARSHALL J F, MCCULLOCH M T. An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature [J]. Geochim Cosmochim Ac, 2002, 66(18): 3263-3280.

[50]    HOEGH-GULDBERG O, MUMBY P J, HOOTEN A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318: 1737-1742.

文章导航

/