海洋地质学

莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系*

  • 邸鹏飞 ,
  • 黄华谷 ,
  • 黄保家 ,
  • 何家雄 ,
  • 陈多福
展开
  • 1. 中国科学院边缘海地质重点实验室, 中国科学院南海海洋研究所, 广东 广州 510301; 2. 中国科学院边缘海地质重点实验室, 广州地球化学研究所, 广东 广州 510640; 3. 中海石油(中国)湛江分公司, 广东 湛江 524057
邸鹏飞(1982—), 男, 河北省保定市人, 助理研究员, 海洋地质与石油地质方向, 主要从事海底冷泉及天然气水合物研究。

收稿日期: 2011-08-30

  修回日期: 2012-01-10

  网络出版日期: 2013-02-06

基金资助

基金项目:中国科学院海洋地质与环境重点实验室开放基金资助项目(MGE2012KG08); 中国科学院知识创新工程青年人才领域前沿项目资助(SQ201110); 国家海洋局海底科学重点实验室开放基金资助(KLSG1204); 国家自然基金项目(91228206)

Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea

  • DI Peng-fei ,
  • HUANG Hua-gu ,
  • HUANG Bao-jia ,
  • HE Jia-xiong ,
  • CHEN Duo-fu
Expand
  • 1.Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 China; 2.Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China 510640; 3. China National Offshore Oil Corporation Ltd., Zhanjiang 524057, China

Received date: 2011-08-30

  Revised date: 2012-01-10

  Online published: 2013-02-06

摘要

麻坑作为海底冷泉流体活动的标志, 普遍分布于莺歌海盆地中央坳陷区和莺东斜坡带。莺歌海盆地单个麻坑面积5×8—24×26m2, 坑深一般在0.5—6.7m之间, 形状为圆形或椭圆形, 个别为长条状, 最大的面积达300×580m2, 坑深为117m。麻坑的形成与泥底辟多期次活动和气藏中天然气等流体的向上运移和喷发有关。麻坑发育区常伴有泥火山形成。地震剖面上有古麻坑(被掩埋的麻坑)的发育, 表明历史时期曾发生过冷泉流体的喷发。在同一渗漏通道内由同一泥底辟形成的2次麻坑表明历史时期发生了2次间歇性的泥底辟上侵活动。依据莺歌海盆地麻坑深度, 估计向上渗漏导致麻坑形成的深部气藏中的游离气层厚约16—94m。

本文引用格式

邸鹏飞 , 黄华谷 , 黄保家 , 何家雄 , 陈多福 . 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系*[J]. 热带海洋学报, 2012 , 31(5) : 26 -36 . DOI: 10.11978/j.issn.1009-5470.2012.05.005

Abstract

Pockmarks, as a sign of gas and fluid seepage on the seafloor, are widely distributed around the center depression and Yingdong Slope area of the Yinggehai Basin. The area of a single pockmark may range from 24×26 to 5×8 m2, its depth may be between 0.5 and 6.7 m, and its shape is approximately circular or elliptical, with a few of them being long strips. The largest one is 300×580 m2, and its depth is 117 m. The pockmark formation correlates with the multiple-stage activity of mud diapirs and the upward migration and eruption of free gases and fluids from the gas reservoir. The pockmarks are usually accompanied with the formation of mud volcano. Paleo-pockmarks (the buried pockmarks) have been discovered along seismic profiles, which indicates that the free gas and the fluid eruption took place in a historical period. The two times of pockmark activity in an identical seepage channel show that the upward intrusion of mud diapir took place intermittently. According to the depth of pockmarks, it is estimated that a 16- to 94-m-thick free gas layer upward venting in the deep gas reservoir is needed to form a 0.5- to 6.7-m-deep pockmark in the Yinggehai Basin.

参考文献

[1] KING L H, MACLEAN B. Pockmarks on the Scotian Shelf [J]. Geological Society of America Bulletin, 1970, 81: 3141-3148.
[2] HOVLAND M. Characteristics of pockmarks in the Norwegian Trench [J]. Marine Geology, 1981, 39: 103?117.
[3] HOVLAND M, JUDD A G, KING L H. Characteristic features of pockmarks on the North-Sea floor and Scotian Shelf [J]. Sedimentology, 1984, 31: 471?480.
[4] HOVLAND M, GALLAGHER J, CLENNELL M B, et al. Gas hydrate and free gas volumes in marine sediments: Example from the Niger Delta front [J]. Mar Pet Geol, 1997, 14 (3): 245-255.
[5] HOVLAND M, SVENSEN H, FORSBERG C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing [J]. Mar Geol, 2005, 218: 191-206.
[6] HOVLAND M, JUDD A G. In Seabed pockmarks and see-pages [M]. London: Graham and Trotman, 1988: 293.
[7] GAY A, LOPEZ M, COCHONAT P, et al. Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo Basin, West African Margin [M] // VAN RENSBERGEN P, HILLIS, R R, MALTMAN A J, et al. Subsurface sediment mobilization. London: Geological Society of London, 2003: 173-189.
[8] FOSSUM B A, MAISEY G H, TORSEN H O. Marine geophysical research in the Weddell Sea during the Norwegian Antarctic Research Expedition 1976?1977[M] // CRADDOCK C. Antarctic geoscience. Madison: University of Wisconsin Press, 1982: 397-404.
[9] PILCHER R, ARGENT J. Mega-pockmarks and linear pockmark trains on the West African continental margin [J]. Mar Geol, 2007, 244:15-32.
[10] SAHLING, H, G. BOHRMANN, GERHARD, S V, et al. Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249(3-4): 206?225.
[11] PAULL C K, USSLER III W, MAHER N, et al. Pockmarks off Big Sur, California [J]. Mar Geol, 2002, 181: 323?335.
[12] NELSON H, THOR D R, SANDSTROM M W, et al. Modern biogenic gas-generated craters (sea-floor pockmarks) on the Bering Shelf, Alaska [J]. Geol Soc Am Bull, 1979, 90: 1144-1152.
[13] SCHMUCK E A, PAULL C K. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide [J]. Geo-Marine Letters, 1993, 13:145?152.
[14] TAYLOR M H, DILLON W P, PECHER I A, Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data [J]. Marine Geology, 2000, 164: 79?89.
[15] EICHEHUBL P, GREENE H G, NAEHR T, et al. Structural control of fluid flow: offshore fluid seepage in the Santa Barbara Basin, California[J]. Journal of Geochemical Exploration, 2000, 69/70: 545?549.
[16] DIMITROV L I, WOODSIDE J. Deep sea pockmarks environments in the eastern Dimitrov L I. Mud volcanoes—the most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59: 49?76.
[17] ?IFCI G, DERMAN D, MUSTAFA E. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea [J]. Geo-Mar Lett, 2003, 23(3) : 311?322.
[18] GAY A, M LOPEZ, COCHONAT P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic paleochannels in the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 25?40.
[19] SOLHEIM A, ELVERHOI A. Gas-related sea floor craters in the Barents Sea [J]. Geo-Mar Lett, 1993,13:235-243.
[20] COLE D, STEWART S A, CARTWRIGHT J A. Giant irregular pockmark craters in the Palaeogene of the Outer Moray Firth Basin, UK North Sea [J]. Mar Petrol Geol, 2000, 17: 563-577.
[21] CATHLES L M, SU ZHENG, CHEN DUOFU, et al. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration [J]. Marine and Petroleum Geology, 2010, 27(1): 82?91.
[22] 苏正, 曹运诚, 吴能友, 等. 水合物层下伏游离气渗漏过程的数值模拟及实例分析[J].地球物理学报, 2009, 52(12) : 3124-3131.
[23] SCANLON K M, KNEBEL H J. Pockmarks in the floor of Penobscot Bay [J]. Maine Geo-Mar Lett, 1989, 9: 53-58.
[24] KHANDRICHE A, WERNER F. Freshwater induced pockmarks in Bay of Eckernfoerde, Western Baltic[C] // MOJSKI J E. Proc 3rd Marine Geological Conf, The Baltic. Warzawa: Prace Państwowego Instytutu Geologicznego, 1995: 155-164.
[25] HARRINGTON P K. Formation of pockmarks by pore-water escape [J]. Geo-Mar Lett, 1985, 5: 193-197.
[26] HOVLAND M, J V GARDNER, JUDDA. The significance of pockmarks to understanding fluid flow processes and geohazards [J]. Geofluids, 2002, 2(2): 127?136.
[27] HOVLAND M, TALBOT M R, QUALE H, et al. Methane-related carbonate cements in pockmarks of the North Sea [J]. Journal of Sedimentary Petrology, 1987, 57: 881-92.
[28] JUDD A G, HOVLAND M, DIMITROV L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofluids, 2002, 2:109-126.
[29] 张启明, 刘福宁, 杨计海. 莺歌海盆地超压体系与油气聚集[J]. 中国海上油气: 地质, 1996, 10(2): 65?75.
[30] HUANG, B J, XIAO, X M, LI, X X. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea [J]. Organic Geochemistry, 2003, 34: 1009-1025.
[31] HUANG BJ, XIAO X M, LI, X X. .Geochemistry, origin, and accumulation of CO2 in natural gases of the Yinggehai Basin, offshore South China Sea [J]. AAPG Bulletin, 2004, 88 (9): 1277?1293.
[32] 金博, 刘震, 李绪深. 莺歌海盆地泥-流体底辟树型输导系统及运移模式[J].地质科学, 2008, 43 (4): 810-823.
[33] 谢习农, 李思田, 胡祥云, 等.莺歌海盆地底辟带热流体输导系统及其成因机制[J]. 中国科学, 1999, 29(3) : 247-256.
[34] 李列, 宋海斌, 杨计海. 莺歌海盆地中央坳陷带海底天然气渗漏系统初探[J]. 地球物理学进展, 2006, 21(4): 1244?1247.
[35] HUANG B J, XIAO X M, Li X S, et al. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea [J]. Marine and Petroleum Geology, 2009, 26(6): 928-935.
[36] CURZI P V, VEGGIANI A. I pockmarks nel mare Adriatico centrale [J]. Acta Naturalia de “L’ Ateneo Parmense’’, 1985, 21: 9-90.
[37] BARAZA J, ERCILLA G. Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain)[J]. Mar Petrol Geol, 1996, 13: 253-261.
[38] 何家雄, 刘海龄, 姚永坚, 等. 南海北部边缘盆地油气地质及资源前景[M]. 北京: 石油工业出版社, 2008: 70?83.
[39] HUANG B J, XIAO X M, HU Z L, et al. Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai Basin, offshore South China Sea [J]. Organic Geochemistry, 2005, 36(12): 1689?1702.
[40] WANG ZHENFENG, HUANG BAOJIA. Dongfang 1-1 gas field in the mud diapir belt of the Yinggehai Basin, South China Sea [J]. Mar Petrol Geol, 2008, 25(4?5): 445-455.
[41] JUDD A, HOVLAND M. Seabed Fluid Flow[M]. Cambridge: Cambridge University Press, 2007: 475.
[42] 邓继新, 史衙, 刘瑞殉, 等. 泥岩、页岩声速各向异性及其影响因素分[J]. 地球物理学报, 2004, 47(5) : 862?868.
[43] CATHLES, L M. Changes in sub-water table fluid flow at the end of the Proterozoic and its implications for gas pulsars and MVT lead-zinc deposits [J]. Geofluids, 2007, 7 (2): 209-226.
[44] 王欢, 王琪, 张功成, 等. 琼东南盆地梅山组泥岩盖层封闭性综合评价[J]. 地球科学与环境科学, 2011, 33(2): 152?158.
[45] 杨计海, 易平, 黄保家. 莺歌海盆地生物气成藏特征[J].天然气工业, 2005, 25(10) : 14.
文章导航

/