海洋生物学

近江牡蛎i-型溶菌酶基因分析及温度对基因表达的影响

展开
  • 1. 广西大学水产科学研究所,广西 南宁 530005;2. 广西水产研究所,广西 南宁 530021
作者简介:许友卿(1958—), 女, 广东省汕头市人, 博士, 教授, 博士生导师,主要研究环境生物学、鱼类营养、生理生化与分子生物学。

收稿日期: 2013-02-06

  修回日期: 2013-02-06

  网络出版日期: 2013-02-06

基金资助

基金项目:国家科技支撑计划项目(2008BAD94B03)

Analysis of i-type lysozyme gene from Crassostrea hongkongensis and the effect of temperature on the gene expression

Expand
  • 1.Institute for Fishery Sciences, Guangxi University, Nanning 530004, China;

Received date: 2013-02-06

  Revised date: 2013-02-06

  Online published: 2013-02-06

摘要

溶菌酶是机体先天免疫系统中一个重要的效应分子, 参与机体多种免疫反应。本研究克隆了近江牡蛎Crassostrea hongkongensis i-型溶菌酶的保守cDNA序列, 并探讨其在不同组织的表达、不同温度对其表达的影响。结果表明, 近江牡蛎i-型溶菌酶保守cDNA序列长634 bp, 包含一个长420 bp开放阅读框, 编码139个氨基酸;其蛋白序列具有典型的i-型溶菌酶特征, 包含特定氨基酸残基序列CL(E/L/R/H)C(I/M)C、部分高度保守序列SCG(P/Y)FQI和酶活性中心位点(Glu34、Asp45、Ser48、Trp61);另外, 还发现一个新的氨基酸保守序列HNGGPRGC。i-型溶菌酶基因在近江牡蛎消化腺、肌肉、鳃、外套膜、唇瓣等5种组织的表达量以消化腺最高, 鳃次之, 肌肉最低。i-型溶菌酶基因的表达与温度相关, 水温20—25℃, 其表达量比较稳定;水温6℃或13℃, 表达量都呈下降趋势;在27℃, 表达量在整个实验过程都维持一个相对高的水平;在34℃, 其表达量在第12小时达到最高, 第48 小时后急剧下降;表明温度可影响i-型溶菌酶基因表达, 从而调节其免疫功能和对外环境的应激反应。

本文引用格式

许友卿 吴卫君 丁兆坤 潘志忠, 何为, 吴铁军, 陈秀荔, 李咏梅,蒋伟明 . 近江牡蛎i-型溶菌酶基因分析及温度对基因表达的影响[J]. 热带海洋学报, 2012 , 31(6) : 69 -75 . DOI: 10.11978/j.issn.1009-5470.2012.06.011

Abstract

Lysozyme is one of the important effectors involved in a variety of immune responses in innate immune system of organisms. A conservative i-type lysozyme cDNA sequence was cloned from Crassostrea hongkongensis and its expression in different tissues was studied. The effects of different temperatures on the gene expression in the experiment were also studied. The cloned conservative i-type lysozyme cDNA sequence contained 634 bp with a 420 bp open reading frame and the cDNA encoded 139 amino acids. A new conservative amino acid sequence, HNGGPRGC, and the typical features were found in the protein sequence of the i-type lysozyme from C. hongkongensis, including specific amino acid residue sequence, CL(E/L/R/H)C(I/M)C, a partial highly conservative sequence, SCG(P/Y)FQI, and the enzyme active site (Glu34, Asp45, Ser48, Trp61). Real-time quantitative PCR was used to assess the expression pattern of the i-type lysozyme gene in the digestive gland, muscle, gill, mantle, and labial palps of C. hongkongensis. The highest expression level of the i-type lysozyme gene was found in the digestive gland, the second in the gill, and the lowest in the muscle. A temperature stress experiment was conducted to study the expression control of the i-type lysozyme gene. The expression level was stable when the water temperature was at 20?25℃. A tendency to decrease expression was found at 6 or 13℃. The expression was maintained at a relatively high level throughout of 96 h at 27℃. The expression level was found the highest at 12 h and sharply declined after 48 h at 34℃. It is concluded that the expression of the i-type lysozyme gene was affected by temperature, which could be used to control the immune function of C. hongkongensis in response to external environment

参考文献

[1] BACHALI S, JAGER M, HASSANIN A, et al. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function [J]. J Mol Evol , 2002 , 54(5) : 652-664.
[2] ZHAO J, QIU L, NING X X, et al. Cloning and characterization of an invertebrate type lysozyme from Venerupis philippinarum [J]. Comp Biochem Physiol B, 2010, 156(1) : 56-60.
[3] KYOMUHENDO P, MYRNES B, NILSEN I W. A cold-active salmon goose-type lysozyme with high heat tolerance [J]. Cell Mol Life Sci, 2007, 64(21) : 2841-2847.
[4] KIM M, AHN I Y, CHEON J, et al. Molecular cloning and thermal stress-induced expression of a pi-class glutathione S-transferase (GST) in the Antarctic bivalve Laternula elliptica [J]. Comp Biochem Physiol A, 2009, 152(2): 207-213.
[5] MONARI M, MATOZZO V, FOSCHI J, et al. Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina [J]. Fish Shellfish Immun, 2007, 22(1-2) : 98-114.
[6] YU J H, SONG J H, CHOI M C, et al. Effects of water temperature change on immune function in surf clams, Mactra veneriformis (Bivalvia: Mactridae) [J]. J Invertebr Pathol, 2009, 102(1) : 30-35.
[7] DE ZOYSA M, WHANG I, LEE Y, et al. Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress [J]. Comp Biochem Phys B, 2009, 154(4) : 387-395.
[8] 许友卿, 吴卫君, 蒋伟明, 等. 温度对贝类免疫系统的影响及其机理研究进展[J]. 水产科学, 2012, 31(3): 176?180.
[9] 林群, 梁旭方, 王琳, 等. 近江牡蛎等7种养殖鱼虾贝类参照基因β-肌动蛋白cDNA序列的克隆与比较分析[J]. 生态毒理学报, 2008, 3(3) : 256-261.
[10] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method [J]. Methods, 2001, 25(4) : 402-408.
[11] ITOH N, TAKAHASHI K G. A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas [J]. Mol Immunol, 2009, 46(8?9) : 1768-1774.
[12] JOSKOV? R, ?ILEROV? M, PROCH?ZKOV? P, et al.

Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei [J]. Develop Com Immunol, 2009, 33(8) : 932-938.
[13] ITOH N, OKADA Y, TAKAHASHI K G, et al. Presence and characterization of multiple mantle lysozymes in the Pacific oyster, Crassostrea gigas [J]. Fish Shellfish Immun, 2010, 29(1) : 126-135.
[14] SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees [J]. Mol Biol Evol, 1987, 4(4) : 406-425.
[15] CONG L, YANG X, WANG X, et al. Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein [J]. J Biosci Bioeng, 2009, 107(6) : 583-588.
[16] KAWAMURA S, OHNO K, OHKUMA M, et al. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme [J]. J Biochem, 2006, 140(1) : 75-85.
[17] PIPE R K. Hydrolytic enzymes associates with the granular hemocytes of the marine mussel Mytilud edulis [J]. Histochem J, 1992, 22(11) : 529-603.
[18] XUE Q G, ITOH N, SCHEY K L, et al. A new lysozyme from the eastern oyster (Crassostrea virginica) indicates adaptive evolution of i-type lysozymes [J]. Cell Mol Life Sci, 2007, 64(1) : 82-95.
[19] FEARMAN J, MOLTSCHANIWSKYJ N A. Warmer temperatures reduce rates of gametogenesis in temperate mussels, Mytilus galloprovincialis[J]. Aquaculture, 2010, 305(1?4) : 20?25.
[20] VERLECAR X N, JENA K B, CHAINY G B. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature [J]. Chem Biol Interact, 2007, 167(3) : 219-226.
[21] PARK H, AHN I Y, KIM H, et al. Analysis of ESTs and expression of two peroxiredoxins in the thermally stressed Antarctic bivalve Laternula elliptica [J]. Fish Shellfish Immun, 2008, 25(5) : 550-559.
[22] WANG F Y, YANG H S, GAO F, et al. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus [J]. Comp Biochem Physiol A, 2008, 151(4) : 491-498.
文章导航

/