海洋环境生物学

沉积物暴露条件下文蛤Meretrix meretrix 对重金属Cu、Pb的富集动力学研究

  • 李磊 ,
  • 王云龙 ,
  • 沈盎绿 ,
  • 蒋玫 ,
  • 黄厚见 ,
  • 沈新强
展开
  • 农业部海洋与河口渔业资源及生态重点开放实验室,中国水产科学研究院东海水产研究所,上海 200090
李磊(1985—),男,安徽省亳州市人,助理研究员,研究方向海洋生态学。E-mail:zheyilee@126.com

收稿日期: 2013-04-20

  修回日期: 2013-04-20

  网络出版日期: 2013-04-20

基金资助

现代农业产业技术体系建设专向资金项目资助(CARS-48);国家科技支撑计划资助项目( 2009BADB7B02 )

Kinetic study on the bioconcentration of heavy metals Cu and Pb in Meretrix meretrix under the condition of sediment exposure

  • LI Lei ,
  • WANG Yun-long ,
  • SHEN Ang-lü ,
  • JIANG Mei ,
  • HUANG Hou-jian ,
  • SHEN Xin-qiang
Expand
  • Chinese Academy of Fishery Sciences, Key and Open Laboratory of Marine and Estuarine, Fisheries Resources and Ecology, East China Sea Fisheries Research Institute, Ministry of Agriculture, Shanghai 200090, China

Received date: 2013-04-20

  Revised date: 2013-04-20

  Online published: 2013-04-20

摘要

应用半静态双箱动力学模型室内模拟了沉积物暴露条件下文蛤Meretrix meretrix 对Cu、Pb的生物富集,通过对富集与排出过程中文蛤体内重金属污染物的动态监测和对富集与排出过程监测结果的非线性拟合,得到了文蛤富集重金属的吸收速率常数K1、排出速率常数K2、生物富集因子BCF(bioconcentration factors)、生物学半衰期B1/2等动力学参数。拟合结果得到的Cu、Pb各动力学参数分别为,K1为4.6333—72.3754;K2为0.0512—0.0798;BCF为60.7646—1414.9634;B1/2为8.69—13.55。对模型的拟合优度检验结果显示,沉积物暴露条件下文蛤对重金属Cu、Pb的生物富集数据符合双箱模型,模型的拟合优度良好。比较结果得出,吸收速率常数K1及生物富集因子BCF均随着外部水体金属暴露浓度的增大而减小;文蛤对Cu富集能力大于Pb;Cu在文蛤体内的生物学半衰期B1/2大于Pb;理论平衡状态下生物体内Cu、Pb的含量CAmax随着外部水体中金属暴露浓度的增大而增大,且呈显著正相关,实验结果表明沉积物暴露条件下双箱动力学模型在一定条件下是可以应用于文蛤的富集动力学研究的,仍需要进一步开展不同条件下实验研究分析。

本文引用格式

李磊 , 王云龙 , 沈盎绿 , 蒋玫 , 黄厚见 , 沈新强 . 沉积物暴露条件下文蛤Meretrix meretrix 对重金属Cu、Pb的富集动力学研究[J]. 热带海洋学报, 2013 , 32(1) : 70 -75 . DOI: 10.11978/j.issn.1009-5470.2013.01.010

Abstract

Under the condition of sediment exposure, the kinetic parameters of the absorption process of accumulation and elimination of heavy metals Cu and Pb in Meretrix meretrixwere investigated using a semi-static two-compartment kinetic model. The kinetic parameters of bioconcentration were obtained from the model by nonlinear curve fitting, including uptake rate constant (K1), elimination rate constant (K2), bioconcentration factor (BCF), and biological half-life (B1/2).The modeling results showed that K1 ranged from 4.6333 to 72.3754, K2 ranged from 0.0512 to 0.0798, BCF ranged from 60.7646 to 1414.9634, and B1/2 ranged from 8.69 to 13.55. We found that the metal concentration data was confirmed to the two-compartment model, and that good agreement was found between the predicted and observed metal concentrations using the goodness-of-fit test under the condition of sediment exposure. The results also indicated that K1 and BCF of M. meretrixgenerally decreased with the increase of heavy metal exposure concentration in the ambient seawater, that the bioaccumulation ability order to the two heavy metals was Cu>Pb, that B1/2 of Cu was longer than that of Pb, and that maximal content in the organism (CAmax) at the theoretic equilibrium increased and was basically proportiona1to increasing metal concentration in the water. The experimental results showed that the semi-static two-compartment kinetic model could well fit the bioconcentration of heavy metals Cu and Pb in M. meretrix, but requires further experimental research and analysis under different conditions.

参考文献

[1] 徐凤山 中国海双壳类软体动物[M]. 北京:科学出版社, 1997: 1-333.
[2] FORSTNER U, WITTMAN G T W. Metal contamination in aquatic environment[M]. Berlin: Springer-Verlag, 1979:197-270.
[3] RODITI H A, FISHER N S, SANUDO-WILHELMY S A. Field testing a metal bioaccumulation model for zebra mussels[J]. Environmental Science & Technology, 2000,3413:2817-2825.
[4] 王亚炜,魏源送,刘俊新. 水生生物重金属富集模型研究进展[J]. 环境科学学报, 2008,281:12-20.
[5] FLORENCE B. Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from seawater[J]. Science of the Total Environment, 1998,2221-2:55-61.
[6] KAHLE J. Bioaccumulation of trace metals in the copepod Calanoides acutus from the Weddell Sea Antarctica: comparison of two-compartment and hyperbolic toxicokinetic models[J]. Aquatic Toxicology, 2002,591-2:115-135.
[7] ZAUKE G P, VON LEMM R, MEURS H G,et al. Validation of estuarine gammarid collectives Amphipoda: Crustacea as biomonitors for cadmium in semi-controlled toxicokinetic flowthrough experiments[J]. Environmental Pollution, 1995,902:209-219.
[8] 王晓丽,孙耀,张少娜. 牡蛎对重金属生物富集动力学特性研究[J]. 生态学报, 2004,245:1086-1090.
[9] 张少娜,孙耀,宋云利,等. 紫贻贝Mytilus edulis 对4种重金属的生物富集动力学特性研究[J]. 海洋与湖沼, 2004,354:438-445.
[10] 李学鹏,励建荣,段青源,等. 文蛤对重金属铜、铅、镉的生物富集动力学[J]. 水产学报, 2008,324:592-600.
[11] 廖自基 微量元素的环境化学及生物效应[M]. 北京: 中国环境科学出版社, 1992: 1-520.
[12] VALLEE B L, ULMER D D. Biochemical effects of mercury, cadmium, and lead[J]. Annual Review of Biochemistry, 1972,41:91-128.
[13] 中华人民共和国国家质量监督检验检疫总局 GB/T 18668-2002 海洋沉积物质量[S]. 北京: 中国标准出版社, 2002: 1-4.
[14] 中华人民共和国国家质量监督检验检疫总局 GB/T 17378. 4-2007海洋监测规范-第四部分: 海水分析[S]. 北京: 中国标准出版社, 2008: 1-169.
[15] CROTEAU M N, LUOMA S N. Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes[J]. Environmental Toxicology and Chemistry, 2005,2411:2871-287.
[16] WANG W X, FISHER N S. Delineating metal accumulation pathways for marine invertebrates[J]. Science of the Total Environment, 1999,238:459-472.
[17] 马陶武,朱程,王桂岩,等. 锈环棱螺对沉积物中重金属的生物积累及其与重金属赋存形态的关系[J]. 应用生态学报, 2010,213:734-742.
[18] PAPELIS C, ROBERTS P V, LECKIE J O. Modeling the rate of cadmium and selenite adsorption on micro-and mesoporous transition alumina [J]. Environmental Science & Technology, 1995,294:1099-1108.
[19] 董良德,王万杰,孙玉龙,等. 河流底泥对重金属铜吸附—释放的实验研究[J]. 水资源保护, 1995,1:29-33.
[20] 任加国,武倩倩. 海洋沉积物对重金属吸附特性研究[J]. 海洋环境科学, 2010,294:469-472.
[21] 王继纲,马启敏,刘茜,等. 渤海湾北部沉积物重金属Cu、Zn释放及动力学研究[J]. 海洋湖沼通报, 2007,1:69-73.
[22] 励建荣,李学鹏,王丽,等. 贝类对重金属的吸收转运与累积规律研究进展[J]. 水产科学, 20071:51-55.
文章导航

/