海洋水文学

基于卫星高度计数据的南海水平搅拌分析

  • 李玮洁 ,
  • 詹海刚
展开
  • 1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301; 2. 中国科学院大学, 北京 100049;
李玮洁(1987~), 女, 重庆市人, 硕士研究生, 主要从事海洋遥感应用研究。E-mail: jayway25@sina.com

收稿日期: 2013-04-15

  修回日期: 2013-05-28

  网络出版日期: 2014-04-02

Analysis of horizontal stirring in the South China Sea derived from satellite altimeter data

  • LI Wei-jie ,
  • ZHAN Hai-gang
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;

Received date: 2013-04-15

  Revised date: 2013-05-28

  Online published: 2014-04-02

摘要

搅拌是海水混合的重要组成, 其强度可由基于拉格朗日观点的有限时间李亚普诺夫指数(Finite Time Lyapunov Exponents, FTLE)定量计算。文章利用卫星高度计资料统计分析了2002~2011年间南海地转流场的FTLE时空变化特征。结果显示, FTLE在越南东南海域强度最大, 对应水平搅拌作用最强; 而在南海西北、东南区域其值偏低。近10年的南海水平搅拌呈缓慢增强趋势, 且存在明显的季节变化, 夏季较强而冬季偏弱。FTLE的空间分布与基于欧拉观点的涡动能和应变速率相似, 强搅拌的区域, 其涡动能和应变速率亦较高。与Okubo-Weiss参数的比较则显示, 构成流场拉格朗日拟序结构(Lagrangian Coherent Structures, LCS)的FTLE脊线与流场中涡旋联系紧密, FTLE低值集中在旋转主导的涡旋内部, 而高值多在涡旋周围应变主导区域。

本文引用格式

李玮洁 , 詹海刚 . 基于卫星高度计数据的南海水平搅拌分析[J]. 热带海洋学报, 2014 , 33(2) : 10 -16 . DOI: 10.11978/j.issn.1009-5470.2014.02.002

Abstract

Stirring is an important part of mixing, which can be quantified using Finite Time Lyapunov Exponents (FTLE) based on Lagrangian view. In this paper, we calculated the FTLE of surface ocean derived from satellite altimeter from 2002 to 2011, and then analyzed spatial and temporal variation of horizontal stirring in the South China Sea (SCS). Results show that FTLE in the SCS is not uniform, with high values southeast of Vietnam indicating strong stirring, and low values in the northwest and southeast of the SCS. A slowly increasing trend of stirring in the SCS is observed during the 10 year period. FTLE also displays a seasonal fluctuation, strong in summer but weak in winter. Furthermore, we found that FTLE has a similar spatial distribution with Euler-based eddy kinetic energy (EKE) and strain rate, with high and low values of these three quantities locating roughly in the same areas. A comparison with Okubo-Weiss parameter reveals a strong relationship between vortices and FTLE ridges, referred to as Lagrangian Coherent Structures (LCS). Low values of FTLE are mainly present inside rotation-dominated vortices, while high values occur in strain-dominated regions surrounding the vortices.

参考文献

[1].陈更新. 2010. 南海中尺度涡的时空特征研究[D]. 青岛: 中国科学院海洋研究所: 7-15.
[2].方文东, 方国洪. 1998. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 13(2): 166-172.
[3].管秉贤, 袁耀初. 2006. 中国近海及其附近海域若干涡旋研究综述 Ⅰ. 南海和台湾以东海域[J]. 海洋学报, 28(3): 1-16.
[4].ABRAHAM E R, BOWEN M M. 2002. Chaotic stirring by a mesoscale surface-ocean flow[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(2): 373-381.
[5].BERON-VERA F J, OLASCOAGA M J, GONI G J. 2008. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures[J]. Geophysical Research Letters, 35(12): L12603
[6].BERON-VERA F J, OLASCOAGA M J. 2009. An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida Shelf[J]. Journal of Physical Oceanography, 39(7): 1743-1755.
[7].BOFFETTA G, LACORATA G, REDAELLI G, et al. 2001. Detecting barriers to transport: A review of different techniques[J]. Physica D: Nonlinear Phenomena, 159(1): 58-70.
[8].BRANICKI M, KIRWAN JR A. 2010. Stirring: The Eckart paradigm revisited[J]. International Journal of Engineering Science, 48(11): 1027-1042.
[9].CHELTON D B, SCHLAX M G, SAMELSON R M, et al. 2007. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 34(15): L15606.
[10].D'OVIDIO F, FERNANDEZ V, HERNANDEZ-GARC A E, et al. 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents[J]. Geophysical Research Letters, 31(17): L17203.
[11].ECKART C. 1948. An analysis of the stirring and mixing processes in incompressible fluids[J]. J Mar Res, 7(3): 265-275.
[12].ELHMA DI D, PROVENZALE A, BABIANO A. 1993. Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion[J]. Journal of Fluid Mechanics, 257(1): 533-558.
[13].HALLER G, YUAN G. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 147(3): 352-370.
[14].HALLER G. 2002. Lagrangian coherent structures from approximate velocity data[J]. Physics of fluids, 14(6): 1851-1861.
[15].HALLER G. 2011. A variational theory of hyperbolic Lagrangian Coherent Structures[J]. Physica D: Nonlinear Phenomena, 240(7): 574-598.
[16].HALLER G, BERON-VERA F J. 2012. Geodesic theory of transport barriers in two-dimensional flows[J]. Physica D: Nonlinear Phenomena, 241(20): 1680-1702.
[17].HERNANDEZ-CARRASCO I, LOPEZ C, HERNANDEZ-GARC A E, et al. 2012. Seasonal and regional characterization of horizontal stirring in the global ocean[J]. Journal of Geophysical Research: Oceans, 117(C10): 2156-2202.
[18].ISERN-FONTANET J, FONT J, GARC A-LADONA E, et al. 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(25-26): 3009-3028.
[19].LAPEYRE G, KLEIN P, HUA B. 1999. Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence[J]. Physics of Fluids, 11(12): 3729-3737.
[20].MCWILLIAMS J C. 1984. The emergence of isolated coherent vortices in turbulent flow[J]. Journal of Fluid Mechanics, 146(1): 21-43.
[21].PIERREHUMBERT R, YANG H. 1993. Global chaotic mixing on isentropic surfaces[J]. Journal of the Atmospheric Sciences, 50(15): 2462-2480.
[22].SHADDEN S C, LEKIEN F, MARSDEN J E. 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 212(3): 271-304.
[23].WAUGH D W, ABRAHAM E R, BOWEN M M. 2006. Spatial variations of stirring in the surface ocean: A case study of the Tasman Sea[J]. Journal of Physical Oceanography, 36(3): 526-542.
[24].WAUGH D W, ABRAHAM E R. 2008. Stirring in the global surface ocean[J]. Geophysical Research Letters, 35(20): L20605.
[25].WAUGH D W, KEATING S R, CHEN M L. 2012. Diagnosing ocean stirring: Comparison of relative dispersion and finite- time Lyapunov exponents[J]. Journal of Physical Oceanography, 42(7): 1173-1185.
文章导航

/