回剥分析(backstripping)是盆地沉降史分析的核心方法, 应用极为广泛; 但对其分析结果的不确定性及参数对分析结果的影响的关注甚少。以珠江口盆地白云凹陷地区为例, 探讨了原始数据和选用参数(包括无钻井揭示的基底埋深和界面年龄、地层划分、孔隙度随深度变化曲线、沉积岩性、古水深和全球海平面变化等)对回剥分析结果的影响。理论分析和灵敏度试验表明, 无钻井揭示的基底埋深的误差影响回剥分析的所有结果; 界面年龄的误差仅影响对沉积速率和构造沉降速率的估计; 岩性的影响反映在选取密度和孔隙度随深度变化的曲线参数之中, 孔隙度在不同地区可能有较大差异; 而古水深是回剥分析参数中不确定性最大的因素, 古水深的误差不影响去压实厚度和沉积速率, 但却100%成为构造沉降量的误差。由于陆坡区古水深和岩性随位置的变化较大, 这两种参数对陆坡区回剥分析结果的影响尤为显著, 需要采用随位置而变的参数, 特别需要综合利用各种地质地球物理资料估计各地层沉积时的古水深变化。数据的不确定性及参数选取的不当有可能导致谬误的结果, 因此发表回剥分析结果时应该说明主要参数的选取依据, 而对于文献中发表的回剥分析结果则必须在考察其数据和参数的不确定性后才能考虑采用与否。
Backstripping is an important and widely used method for basin subsidence analysis. Little attention has been paid on the uncertainty of its results. In this paper, we address this issue based on a study of the Baiyun Sag in the Pearl River Mouth Basin. We demonstrated through theoretical analysis and sensitivity tests that the uncertainty in the non-recovery of the basement depth will pass on to all the results of backstripping, but the uncertainty in age only affects the estimations of sedimentary and subsidence rates. Formation lithology influences the selection of porosity and density parameters. The porosity-depth curves of sandstone and shale vary from area to area. Largest uncertainty comes from paleo-water depth, whose error is 100% inherited by the calculated tectonic subsidence. In the slope area, paleo-water depth and lithology vary significantly with locations. Thus, it is essential to use the paleo-water depth and lithology parameters that are variable with locations. The uncertainty in the source data and inappropriate parameters may lead to erroneous results. Caution should be taken when reading published backstripping results. The quality of parameterization needs to be examined before adopting the results.
[1] 漆家福, 陆春生, 1997. 沉降史反演的现状与应用[J]. 世界地质, 16(2): 23–27.
[2] 周蒂, 陈长民, 等. 2005. 深反射地震剖面所揭示的白云凹陷的深部地壳结构[J]. 科学通报, 50(10): 1024–1031.
[3] 陈刚, 李玖勇, 等. 2010. 沉降史分析方法及研究现状[J]. 石油天然气学报, 32(5): 199–203.
[4] 陈长民, 施和生, 等. 2005. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 12(3): 167–177.
[5] 钱奕中. 1986. 计算沉积层古厚度的逐层恢复法[J]. 石油实验地质, 8(3): 253–262.
[6] 胡登科, 何敏, 等. 2008. 深部地层时深转换中的拟合式选择问题[J]. 地球科学: 中国地质大学学报, 33(4): 531– 537.
[7] P A, ALLEN J R. 2005. Basin analysis: principles and applications[M]. New Jersey: Wiley-Blackwell: 349–395.
[8] P, LIN J, BARCKHAUSEEN U. 2002. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine and Petroleum Geology, 19: 951–970.
[9] T. 2008. Gravity anomalies, flexure and the thermo- mechanical evolution of the west Iberia margin and its conj-ugate of Newfoundland[D]. Oxford: the University of Oxford: 117–162.
[10] N J, MARSDEN G, EGAN S S. 1991. A flexural- cantilever simple-shear/pure-shear model of continental litho-sphere extension: Applications to the Jeanne d'Arc Basin, Grand Banks and Viking Graben, North Sea[J]. Geological Society, London, Special Publications, 56(1): 41–60.
[11] N J, ROBERTS A M, MORLEY C K. 1995. Forward and reverse modelling of rift basin formation[J]. Geological Society, London, Special Publications, 80(1): 33–56.
[12] P A, KUSZNIR N J. 1995. Palaeocene uplift and Eocene subsidence in the northern North Sea Basin from 2D forward and reverse stratigraphic modelling[J]. Journal of the Geolo-gical Society, 152: 833–848.
[13] R, QUIBLIER J. 1974. Thickness changes in sedimen-tary layers during compaction history.methods for quantitative evaluation[J]. The American Association of Petroleum Geolo-gists Bulletin, 58(3): 507–520.
[14] A M, KUSZNIR N J, YIELDING G, et al. 1998. 2D flexural backstripping of extensional basins: The need for a sideways glance[J]. Petroleum Geoscience, 4(4): 327–338.
[15] J G., CHRISTIE P A F. 1980. Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin[J]. Journal of Geophysical Research, 85(B7): 3711–3739.
[16] XIAOBIN, BUROV E, LEROY S, et al. 2005. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 407(1–2): 117–134.
[17] B, GRADSTEIN F M, LLOYD P, et al. 1987. Algorithms for porosity and subsidence history[J]. Computers & Geosciences, 13(4): 317–349.
[18] M S, WATTSA B. 1978. Subsidence of the Atlantic- type continental margin off New York[J]. Earth and Planetary Science Letters, 41: 1–13.
[19] BUBNOFF S. 1954. Fundamentals of geology [M]. 3rd ed. Edinburgh: Oliver and Lloyd: 1–287.
[20] A, RYAN W. 1976. Flexure of the lithosphere and cont-inental margin basins[J]. Tectonophysics, 36(1): 25–44.
[21] HUI, ZHOU DI, PANG XIONG, et al. 2013. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysi-cal Research, 34: 159–173.
[22] HUI, ZHOU DI, LI YUANPIN, et al. 2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, Northern South China Sea[J]. Tectonophysics, 615/616: 182–198.