白云凹陷位于南海北部被动大陆边缘, 断裂发育, 对油气的运聚成藏具有重要意义。研究表明, 始新世至早渐新世的断陷活动控制了烃源岩的发育, 晚渐新世至中中新世的断层活动控制了储层的分布, 晚中新世后的断层活化则影响了盖层和圈闭的展布。综合考虑泥岩涂抹作用和断裂活动性, 并结合最新勘探研究成果, 运用盆地模拟系统模拟研究了两条过井剖面, 结果表明: 白云凹陷断裂活动期次与排烃期次形成了较好的耦合关系, 主要的耦合期为23.8~16.5Ma和13.8~10.5Ma; 其中, 生烃增压作用可能强化了18.5Ma时期的断裂活动; 当活动断裂处于开启状态时, 形成了良好的垂向运移通道; 平静期的断裂则倾向于封闭, 限制了油气的垂向运移; 与单独考虑断裂活动性相比, 泥岩涂抹作用能更好地反映静止期断层的封堵特性; 另外, 模拟预测显示白云深水区的南部断裂发育区具有更好的成藏条件, 易形成大型油气藏。
The Baiyun Sag is located in the northern passive continental margin of the South China Sea. The widespread faults around the sag affect the migration and accumulation of hydrocarbon profoundly. Faults control the sedimentation of source rocks from the Eocene to the Early Oligocene, regulate the range of reservoirs from the Late Oligocene to the Middle Miocene and dominate the seals and traps during the reactivation period in the Late Miocene. We attempt to study the controls of fault activity on hydrocarbon migration and accumulation through faults sealing analysis and basin modeling. Results are as follows. (1) The episodes of fault activity couple well with the generation of hydrocarbon. (2) Overpressure due to hydrocarbon generation may accelerate faulting activity at ~18.5 Ma. (3) Active faults act as perfect conduits for vertical migration of hydrocarbon. (4) Shale smear is much more credible in reflecting the sealing ability of motionless faults than the simple fault activity analysis. (5) The southern faulted area in the deep water tends to be more favorable for hydrocarbon accumulation than the northern area.
[1] .陈长民, 施和生. 2003. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社: 5-8.
[2] .付广, 张靖, 李庆章. 1998. 断层侧向封闭模式与研究方法[J]. 中国海上油气, 12(1): 42-46.
[3] .龚晓峰, 何家雄, 罗春, 等. 2012. 南海北部珠江口盆地油气运聚成藏机制与特征[J]. 海洋地质前沿, 28(6): 20-26.
[4] .郝芳, 邹华耀, 姜建群. 2000. 油气成藏动力学及其研究进展[J]. 地学前缘, 7(3): 11-21.
[5] .姜涛, 任建业. 2004. 基于盆地模拟技术的潮汕坳陷油气勘探前景预测[J]. 海洋地质动态, 20(6): 20-27.
[6] .林畅松, 潘元林, 肖建新, 等. 2000. 构造坡折带—断陷盆地层序分析和油气预测的重要概念[J]. 地球科学, 25(3): 260-266.
[7] .柳保军, 庞雄, 颜承志, 等. 2011a. 珠江口盆地白云深水区沉积充填演化及控制因素分析[J]. 中国海上油气, 23(1): 19-25.
[8] .柳保军, 庞雄, 颜承志, 等. 2011b. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 32(2): 234-242.
[9] .吕延防, 马福建. 2003. 断层封闭性影响因素及类型划分[J]. 吉林大学学报, 33(2): 163-166.
[10] .罗晓容. 2004. 断裂成因他源高压及其地质特征[J]. 地质学报, 78(5): 641-648.
[11] .庞雄, 陈长民. 2007a. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社: 283-287.
[12] .庞雄, 陈长民, 彭大钧, 等. 2007b. 南海珠江深水扇系统的层序地层学研究[J]. 地学前缘, 14(1): 220-229.
[13] .谯汉生, 牛嘉玉, 王明明. 1999. 中国东部深部层系反向断层遮挡聚油原理与勘探实践[J]. 石油勘探与开发, 26(6): 10-13.
[14] .施和生, 秦成岗, 张忠涛, 等. 2009. 珠江口盆地白云凹陷北坡番禺低隆起油气复合输导体系探讨[J]. 中国海上油气, 21(6): 361-366.
[15] .石万忠, 陈红汉, 陈长民, 等. 2006. 珠江口盆地白云凹陷地层压力演化与油气运移模拟[J]. 地球科学, 31(2): 229-236.
[16] .孙龙涛, 陈长民, 詹文欢, 等. 2007. 珠江口盆地断层封堵特征及其影响因素[J]. 石油学报. 28(4): 0253-0267.
[17] .孙珍, 庞雄, 钟志洪, 等. 2005. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 12(4): 489-498.
[18] .杨智, 何生, 王锦喜, 等. 2005. 断层泥比率(SGR)及其在断层侧向封闭性评价中的应用[J]. 天然气地球科学, 16(3): 347-351.
[19] .姚伯初, 万玲, 刘振湖, 等. 2004. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J]. 地球科学, 29(5): 543-549.
[20] .张功成. 2005. 中国近海天然气地质特征与勘探新领域[J]. 中国海上油气, 17(5): 289-296.
[21] .朱俊章, 施和生, 何敏, 等. 2008. 珠江口盆地白云凹陷深水区LW3-1-1井天然气地球化学特征及成因探讨[J]. 天然气地球科学, 19(2): 229-233.
[22] .朱伟林, 钟锴, 李友川, 等. 2012. 南海北部深水区油气成藏与勘探[J]. 科学通报, 57(20): 1833-1841.
[23] .CAILLET G, BATIOT S. 2003. 2D modelling of hydrocarbon migration along and across growth faults: an example from Nigeria[J]. Petrol Geosci, 9(2): 113-124.
[24] .HARRIS D, YIELDING G, LEVINE P, et al. 2002. Using Shale Gouge Ratio (SGR) to model faults as transmissibility barriers in reservoirs: an example from the Strathspey Field, North Sea[J]. Petrol Geosci, 8(2): 167-176.
[25] .HOOPER E C D. 1991. Fluid migration along growth faults in compaction sediments [J]. J Petrol Geol, 14(2): 161-180.
[26] .JOHANNESEN J, HAY S J, MILNE J K, et al. 2002. 3D-oil migration modeling of the Jurassic petroleum system of the Statfjord area, Norwegian North Sea [J]. Petrol Geosci, 8(1): 37-50.
[27] .KNIPE R J. 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bull, 81(2): 187-195.
[28] .KUHN P P, DI PRIMIO R, HILL R, et al. 2012. Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation[J]. AAPG Bull, 96(10): 1867-1897.
[29] .LAMPE C, SONG GUOQI, CONG LIANGZI, et al. 2012. Fault control on hydrocarbon migration and accumulation in the Tertiary Dongying depression, Bohai Basin, China[J]. AAPG Bull, 96(6): 983-1000.
[30] .MCKENZIE D. 1978. Some remarks on the development of sedimentary basins[J]. Earth Planet Sc Lett, 40: 25-32.
[31] .SUN ZHEN, XU ZIYING, SUN LONGTAO, et al. 2014. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin [J]. J Asian Earth Sci, 89(1): 76-87.
[32] .THORSEN C E. 1963. Age of Growth Faulting in Southeast Louisiana[J]. Trans Gulf-Coast Ass Geol Socs, 13(2): 103-110.
[33] .XIE HUI, ZHOU DI, PANG XIONG, et al. 2013. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Mar Geophys Res, 34 (3): 159-173.
[34] .XIE HUI, ZHOU DI, LI YUANPING, et al. 2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 615: 182-198.
[35] .YIELDING G, FREEMAN B, NEEDHAM D T, et al. 1997. Quantitative fault seal prediction[J]. AAPG Bull, 81(6): 897-917.