海洋地质学

基于谱反演估算神狐海域含水合物沉积层厚度

  • 孙运宝 ,
  • 赵铁虎 ,
  • 秦轲 ,
  • 冯京
展开
  • 1. 国土资源部海洋油气资源与环境地质重点实验室, 青岛海洋地质研究所, 山东 青岛 266071; 2. 青岛海洋地质研究所, 山东 青岛 266071
孙运宝(1983~), 男, 山东省烟台市人, 助理研究员, 博士, 主要从事水合物形成机理数值模拟研究。E-mail: yunbaos@sina.com

收稿日期: 2014-05-28

  修回日期: 2014-08-22

  网络出版日期: 2015-06-08

基金资助

中国博士后基金(2012M521296); 国家自然科学基金(41306037); 中国地质调查局国家专项工作项目(GZH201100308)

Time-frequency-based thickness estimation of hydrate-bearing layer in the Shenhu area of the South China Sea

  • SUN Yun-bao ,
  • ZHAO Tie-hu ,
  • QIN Ke ,
  • FENG Jing
Expand
  • 1. Key Laboratory of Marine Hydrocarbon Resource and Enviroment Resources, Ministry of Land Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China; 2. Qingdao Institute of Marine Geology, Qingdao 266071, China

Received date: 2014-05-28

  Revised date: 2014-08-22

  Online published: 2015-06-08

摘要

文章采用基于特殊处理数据的叠后谱反演方法对南海北部陆坡神狐海域的含水合物沉积层厚度进行预测。正演模拟结果表明, 谱反演技术可以精细识别异常地质体, 获取高分辨率的反射系数剖面。结合研究区高信噪比地震资料, 基于频谱分析, 发现在频率剖面上含水合物沉积层主要表现为低频高能、高频低能或高频盲区之上的低频低能、高频高能或高频低能区, 含水合物沉积层顶底界面均存在频率异常, 且含水合物沉积层底界衰减最为强烈, 通过谱反演, 发现获取的反射系数剖面比原始地震数据分辨率更高, 且与实际测井结果可对比, 通过定义-90°相位旋转后谱反演结果上振幅为零值的点之间的距离为地层厚度, 计算的过井含水合物沉积层厚度与测井估算结果吻合度高。研究表明, 该方法可以获取精度较高的含水合物沉积层厚度信息, 实现精度较高的水合物储量估算。

本文引用格式

孙运宝 , 赵铁虎 , 秦轲 , 冯京 . 基于谱反演估算神狐海域含水合物沉积层厚度[J]. 热带海洋学报, 2015 , 34(3) : 54 -61 . DOI: 10.11978/j.issn.1009-5470.2015.03.007

Abstract

Gas hydrate has attracted great interest from the scientists for the impact of its fossil fuel resource potential, the extent of submarine geohazard and global climate change. Thickness of a hydrate-bearing layer is an important parameter in resource evaluation. Quantitative identification of potential gas hydrate accumulation needs to pay urgent attention to the technology in pre-drilling assessment. Thickness of a hydrate occurrence can be identified by the time-frequency analysis method. The result suggests that the time-frequency analysis method, guiding by the logging data, may be an effective tool to identify thick hydrate-bearing layers. A hydrate-bearing layer tends to appear as a low-frequency low intensity zone, underlying a low-frequency high intensity and high-frequency low intensity zone.

参考文献

1 陈多福, 李绪宣, 夏斌. 2004. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 47(3): 483-489.
2 宋海斌, OSAMU M, SHINICHI K. 2003. 天然气水合物似海底反射层的全波形反演[J]. 地球物理学报, 46(1): 42-46.
3 王西文, 刘全新, 吕焕通, 等. 2006. 储集层预测技术在岩性油气藏勘探开发中的应用[J]. 石油勘探与开发, 33(2): 189-193.
4 吴能有, 杨胜雄, 王宏斌, 等. 2009. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 52(6): 1641-1650.
5 张延章, 尹寿鹏, 张巧玲, 等. 2006. 地震分频技术的地质内涵及其效果分析[J]. 石油勘探与开发, 33(1): 64-71.
6 CASTANO K P, OJEDA G, MONTES L. 2011. Thin-layer detection using spectral inversion and a genetic algorithm[J]. Earth Sciences Research Journal, 15(2): 121-128.
7 CHAND S, MINSHULL T A. 2004. The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada[J]. Geophysical Research Letters, 31(14): 1-4.
8 CHEN M A P, RIEDEL M, HYNDMAN R D, et al. 2007. AVO inversion of BSRs in marine gas hydrate studies[J]. Geophysics, 72(2): C31-C43.
9 DAVIE M K, BUFFETT B A. 2001. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research, 106(B1): 497-514.
10 GANGLIN C, MATTEUCCI G, FAHMY B, et al. 2008. Spectral decomposition response to fluids from a deepwater West Africa reservoir[J]. Geophysics, 73: C23-C30.
11 GILLES G, DAVID G. 2002. Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada[J]. Journal of Geophysical Research, 207(B5): 1-11.
12 HARVEY L D D, HUANG Z. 1995. Evaluation of potential impact of methane clathrate destabilization on future global warming[J]. Journal of Geophysical Research, 100: 2905-2926.
13 HORNBACH M J, BANGS N L, BERNDT C. 2012. Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies[J]. Geology, 40(3): 227-230.
14 KVENVOLDEN K A. 1998. Methane hydrate-A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 71: 41-51.
15 MILKOV A V. 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?[J]. Earth Science Reviews, 66: 183-197.
16 OLIVEIRA S, VILHENA O, DA COSTA E. 2010. Time-frequency spectral signature of Pelotas Basin deep water gas hydrates system[J]. Marine Geophysical Researches, 31: 89-97.
17 PARTYKA G, GRIDLEY J. LOPEZ J. 1999. Interpretational applications of spectral decomposition in reservoir characterization[J]. The Leading Edge, 18(3): 353-360.
18 RUPPEL C, BOSWELL R, JONES E. 2008. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview[J]. Marine and Petroleum Geology, 25: 819-829.
19 RUPPEL C D. 2011. Methane hydrates and contemporary climate change[J]. Nature Education Knowledge, 2(12): 12-13.
20 SULTAN N, COCHONAT P, FOUCHER J P, et al. 2004. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 213: 379-401.
21 SUN YUNBAO, WU SHIGUO, DONG DONGDONG, et al. 2012. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 311-314: 32-40.
22 VANNESTE M, BATIST M D, GOLMSHTOK A, et al. 2001. Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia[J]. Marine Geology, 172 (1-2): 1-21.
23 WU SHIGUO, ZHANG GUANGXUE, HUANG YONGYANG, et al. 2005. Gas hydrate occurrence on the continental slope of the northern South China Sea[J]. Marine and Petroleum Geology, 22: 403-412.
24 YUAN TIANSON, SPENCE G D, HYNDMAN R D. 1999. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modeling and full waveform inversion[J]. Journal of Geophysical Research, 104(B1): 1179-1191.
25 ZHANG ZIJIAN, HAN DEHUA, YAO QIULIANG. 2011. Quantitative interpretation for gas hydrate accumulation in the eastern Green Canyon Area, Gulf of Mexico using seismic inversion and rock physics transform[J]. Geophysics, 76(4): B139-B150.
文章导航

/