海洋生物学

核酸指标对安氏伪镖水蚤生长率的指示作用饵料转换的响应

展开
  • 1. 暨南大学, 赤潮与海洋生物学研究中心, 水体富营养化与赤潮防治广东普通高校重点实验室, 广东广州 510632;
    2. 中国科学院南海海洋研究所, 中国科学院海洋生物资源可持续利用重点实验室, 广东广州 510300
何学佳(1978~), 女,贵州省遵义市人, 副研究员,博士, 主要从事浮游动物生态化学计量学和营养生理生态方面的研究。E-mail: thexuejia@jnu.edu.cn

收稿日期: 2015-01-06

  网络出版日期: 2015-08-21

基金资助

国家自然科学基金项目(41276153、41173079、41176087); 中国科学院海洋生物资源可持续利用重点实验室开放基金项目(LMB111008)

Nucleic acid proxies for growth and response to changing prey species in Pseudodiaptomus annandalei

Expand
  • 1. Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China;
    2. Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese academy of

Received date: 2015-01-06

  Online published: 2015-08-21

摘要

对柔弱角毛藻Chaetoceros debilis和威氏海链藻Thalassiosira weissflogii分别喂食的安氏伪镖水蚤(Pseudodiaptomus annandalei)的核酸指标(包括RNA含量、DNA含量、RNA︰DNA、RNA︰protein和DNA︰protein)及元素组成[包括氮(N)含量、磷(P)含量、碳氮(C︰N) 和碳磷(C︰P)比值]随个体发育的变化进行了描述, 并对各阶段的生长率进行了测定。对RNA相关指标与生长率的相关性分析显示, RNA︰protein (RNA:PRO)与生长率不仅具有极类似的变化趋势, 而且二者之间存在良好的相关性。这种正相关性同时适用于柔弱角毛藻喂食的所有发育阶段的蚤体和威氏海链藻喂食的桡足幼体和成体, 因此, RNA︰PRO适合作为安氏伪镖水蚤生长的标志物。饵料转换实验中, 经柔弱角毛藻喂食24h的桡足Ⅱ期幼体分别换作中肋骨条藻Skeletonema costatum和球形棕囊藻Phaeocystis globosa喂食或继续以柔弱角毛藻培养48 h后, 蚤体的RNA含量和RNA︰PRO指标出现显著差异, 呈现中肋骨条藻组>柔弱角毛藻组>球形棕囊藻组的趋势, 而RNA︰DNA比值则是柔弱角毛藻=中肋骨条藻>球形棕囊藻。元素组成的差异主要体现在P含量和C︰N比值的变化上, 中肋骨条藻和球形棕囊藻喂食的蚤体的各项指标并无明显差异, 但均低于柔弱角毛藻喂食的蚤体。据此, 推测RNA相关指标对饵料品质的变化响应较为迅速即时, 而48h内元素组成反映的主要是摄食历史。因此, 现场调查中可利用RNA︰PRO作为标志物迅速有效地指示桡足类的生长状态, 而RNA相关的指标则均可用于桡足类营养状态的指示。

本文引用格式

何学佳, 韩留玉, 吕柏东, 王小冬, 尹健强 . 核酸指标对安氏伪镖水蚤生长率的指示作用饵料转换的响应[J]. 热带海洋学报, 2015 , 34(4) : 65 -73 . DOI: 10.11978/j.issn.1009-5470.2015.04.009

Abstract

Nauplii, copepodids and adults of Pseudodiaptomus annandalei were fed with Chaetoceros debilis and Thalassiosira weissflogiiat the saturated food concentration. Biochemical indices were then measured and described including mass specific RNA content, DNA conten, RNA︰DNA, RNA︰protein, and DNA︰protein, as well as the elemental compositions (mass specific phosphorus content, nitrogen content, atomic C︰P, and C︰N ratios). Their growth rates were also determined for different developmental stages. The relationships between growth rate and three RNA-related indices were analyzed. It was shown that RNA︰protein (RNA︰PRO), varying with developmental stage in the same trend as growth rate, was correlated with growth rate significantly in a positive linear manner for all life stages of P. annandalei on C. debilis and for older stages than nauplii on T. weissflogii. Thus, RNA︰ PRO could be applied as an indicator of P. annandalei growth. In the experiment of changing diet, the CII copepodids with a 24 h feeding history on C. debilis continued to be fed with Skeletonema costatum or Phaeoecystis globosa for another 48 h, and then showed remarkable differences in RNA content and RNA︰PRO ratio, which ranked as S. costatum >C. debilis>P. globosa treatment. Differently, RNA︰DNA ratios ranked as S. costatum =C. debilis>P. globosa treatment. On the other hand, elemental compositions of those copepodids in different treatments differed in phosphorus content and atomic C︰N ratio, which ranked as C. debilis >S. costatum =P. globosa. It can be deduced that RNA-related indices can respond immediately to food change within 48 h while elemental compositions only reflect feeding history. It was concluded that RNA︰PRO can be applied in field investigation as an indicator of growth in copepod, and RNA-related indices can be used to indicate nutrition status.

参考文献

1 ANDERSEN T, HESSEN D O. 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton[J]. Limnol Oceanogr, 36: 807-814.
2 BREMER H, DENNIS P P. 1996. Modulation of chemical composition and other parameters of the cell growth rate[M] // NEIDHARDT F C. Escherichia coli and Salmonella: Cellular and Molecular Biology. 2nd ed. Washington, DC: American Society for Microbiology: 1553-1568.
3 CARRILLO P, VILLAR-ARGAIZ M, MEDINA-SÁNCHEZ JM. 2001. Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: An in situ measurement[J]. J Plankton Res, 23(5): 537-547.
4 DAHLHOFF E P. 2004. Biochemical indicators of stress and metabolism: Applications for Marine Ecological Studies[J]. Annu Rev Physiol, 66: 183-207.
5 FELIPE L, GUSMAO M, MCKINNON D A. 2011. Nucleic acid indices of egg production in the tropical copepod Acartiasinjiensis [J]. J Exp Mar Biol Ecol, 396: 122-137.
6 GISMERVIK I. 1997. Stoichiometry of some marine planktoniccrustaceans[J]. J Plankton Res, 19: 279-285.
7 GOROKHOVA E. 2003. Relationships between nucleic acid levels and eggproduction rates in Acartiabifilosa : implicationsfor growth assessment of copepods in situ[J]. Mar Ecol Prog Ser, 262: 163-172.
8 GOROKHOVA E, EDLUND A, HAJDU S, et al. 2007. Nucleic acid levels in copepods: dynamic response to phytoplankton blooms in the northern Baltic proper[J]. Mar Ecol Prog Ser, 349: 213-225.
9 GUSMAO L F M, McKinnon, A D. 2011. Nucleic acid indices of egg production in the tropical copepod Acartiasinjiensis [J]. J Exp Mar Biol Ecol, 396(2): 122-137.
10 HESSEN D O, LYCHE A. 1991. Inter- and intraspecific variations in zooplankton elemental composition[J]. Arch Hydrobiol, 121: 343-353.
11 HE XUEJIA, WANG WENXIONG. 2008. Kinetics of carbon and phosphorus in P-deficient Daphnia magna : stoichiometric regulation[J]. Limnol Oceanogr, 53(1): 244-254.
12 HOLMBORN T, DAHLGREN K, HOLETON C, et al. 2009. Biochemical proxies for growth and metabolism in Acartiabifilosa (Copepoda, Calanoida)[J]. Limnol Oceanogr: Methods, 7: 785-794.
13 NING JUAN, LI CHAOLUN, YANG GUANG, et al. 2013. Use of RNA:DNA ratios to evaluate the condition and growth of the copepod Calanus sinicu s in the SouthernYellow Sea[J]. Deep- Sea Res Ⅱ, 97: 109-116.
14 SAIZ E, CALBET A, FARA A.1998. RNA content of copepods as a tool for determining adult growth rates in the field[J]. Limnol Oceanogr, 431: 465-470.
15 SOLORZANO L, SHARP J H. 1980. Determination of total dissolved phosphorus and particulate phosphorous in natural waters[J]. Limnol Oceanogr, 29(6): 1149-1160.
16 TANG K W, JAKOBSEN H H, VISSER A W. 2001. Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: Feeding, growth, and trophic interactions among grazers[J]. Limnol Oceanogr, 46(8): 1860-1870.
17 TURNER JT, IANORA A, ESPOSITO F, et al. 2002. Zooplankton feeding ecology: Does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success[J]. J Plankton Res, 24 (11): 1185-1195.
18 VILLAR-ARGAIZL M, STERNER R W. 2002. Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae[J]. Limnol Oceanogr, 47: 1229-1233.
19 WAGNER M, DURBIN E, DUCKLEY L. 1998. RNA:DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus [J]. Mar Ecol Prog Ser, 162: 173-181.
20 WAGNER M M, CAMPBELL R G, BOUDREAU C A, et al. 2001. Nucleic acids and growth of Calanus finmarchicus in the laboratory under different food and temperature conditions[J]. Mar Ecol Prog Ser, 221: 185-197.
21 WALVE J, LARSSON U. 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling[J]. J Plankton Res, 21: 2309-2321.

文章导航

/