海洋地貌学

数值模拟英国利物浦湾在潮汐作用下的泥沙输运

  • 罗晶 ,
  • 李明 ,
  • 孙志林 ,
  • 王威
展开
  • 1. 浙江大学海洋学院, 浙江 杭州 310058;
    2.利物浦大学工程学院, 英国 利物浦 L69 3GQ

收稿日期: 2014-08-19

  修回日期: 2014-12-24

  网络出版日期: 2015-09-11

Numerical simulation of tidal hydrodynamics and sediment transport in Liverpool Bay

  • LUO Jing ,
  • LI Ming ,
  • SUN Zhi-lin ,
  • WANG Wei
Expand
  • 1. Ocean College, Zhejiang University, Hangzhou 310058, China;
    2.School of Engineering, The University of Liverpool, Liverpool L69 3GQ, UK

Received date: 2014-08-19

  Revised date: 2014-12-24

  Online published: 2015-09-11

摘要

通过二维数值模拟研究了位于英国西北海岸的利物浦湾在潮汐单独作用下的水动力以及泥沙输运情况。使用开源软件TELEMAC, 在对模型的源程序进行修改以后能够根据研究需要定制边界条件和初始条件。模型采取输入精简法对利物浦湾中长期的潮汐状况进行分类, 并对每种潮汐作用下的水动力与泥沙输运分别进行对比和分析, 最终确定了对利物浦湾的泥沙输运最相关的潮汐作为代表潮汐, 进而简化了潮汐作用下地形演变的长期计算。研究表明, 利物浦湾内河口海岸的水动力在潮汐作用下主要表现为非对称的涨落潮过程, 而泥沙输运会受到非对称潮汐和当地地形的显著影响。此外, 河口宽度和当地地形还会影响涨落潮的潮位和流速。潮差还会改变涨落潮流速、转流时间、输沙强度和输沙范围。

本文引用格式

罗晶 , 李明 , 孙志林 , 王威 . 数值模拟英国利物浦湾在潮汐作用下的泥沙输运[J]. 热带海洋学报, 2015 , 34(5) : 40 -50 . DOI: 10.11978/2014095

Abstract

In order to understand the influence of tide on sand exchange between an estuary and adjacent coastal region, three estuaries around North West England were chosen for detailed study using an open-source numerical morphological model system, TELEMAC. The source code of model was modified to customize tidal conditions and bed sand sizes. An “input- reduction” method was used to model sediment transport under several tides. “Morphological representative tide” was further achieved for long-term morphological modelling. It is clear that the dominant hydrodynamic processes of an estuary are influenced by tidal asymmetry. Local sediment transport is affected by seabed bathymetry and tidal asymmetry. Furthermore, shape and bathymetry of an estuary can influence tidal elevation and velocity. Tidal range can change transportation of the tidal wave which further changes the range of sediment transport.

参考文献

1 丁平兴, 孔亚珍, 朱首贤, 等.2001. 波-流共同作用下的三维悬沙输运数学模型[J]. 自然科学进展, 11(2): 147-152.
2 窦国仁, 赵士清, 黄亦芬.1987. 河道二维全沙数学模型研究[J]. 水利水运科学研究, 2: 1-12.
3 韩曾萃, 程杭平.1993. 一、二维污染浓度场及质点跟踪的耦合模型[C]//水污染防治及城市污水资源化技术.北京: 科学出版社: 231-238.
4 李孟国.2006. 海岸河口泥沙数学模拟研究进展[J].海洋工程, 24(1): 139-154.
5 林秉南, 赵雪华, 施麟宝.1980. 河口建筑对毗邻海湾潮波变形的计算(二维特征理论法)[J].水利学报, 3: 16-26.
6 沈焕庭. 1997. 中国河口数学模拟研究的进展[J].海洋通报, 16(2): 80-85.
7 王彪, 沈永明, 王亮. 2012. 波浪潮流共同作用下长兴岛海区二维悬沙输运数值模拟研究[J]. 水动力学研究与进展: A 辑, 3: 321-330.
8 AUBREY D G, SPEER P E. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems, part 1: Observations[J]. Estuarine, Coastal and Shelf Science, 21: 185-205.
9 BROWN J M, DAVIES A G. 2009. Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions[J]. Continental Shelf Research, 29 (11/12): 1502-1514.
10 BROWN J M, DAVIES A G. 2010. Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport[J]. Geomorphology, 114: 431-439.
11 DRONKERS J. 1986. Tidal asymmetry and estuarine morphology[J]. Netherlands Journal of Sea Research, 20(2): 117-131.
12 EGBERT G D, EROFEEVA S Y. 2002. Efficient inverse modelling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 19(2): 183-204.
13 FRIEDRICHS C T, MADSEN O S. 1992. Nonlinear diffusion of the tidal signal in frictionally dominated estuaries[J]. Journal of Geophysical Research: Oceans (1978-2012), 97(C4): 5637-5650.
14 HERVOUET J M, BATES P. 2000. The TELEMAC modelling system—special issue[J]. Hydrological Processes, 14 (13): 2207-2208.
15 KANG W, JUN K S. 2003. Flood and ebb dominance in estuaries in Korea[J]. Estuarine, Coastal and Shelf Science, Ocean Dynamics, 56 (C4): 178-198.
16 MOORE R D, WOLF J, SOUZA A J, et al. 2009. Morphological evolution of the Dee Estuary, Eastern Irish Sea, UK: A tidal asymmetry approach[J]. Geomorphology, 103 (4): 588-596.
17 PUGH D. 2004. Changing sea levels: Effects of tides, weather and climate [M]. UK: Cambridge University Press: 280-280.
18 ROBINS P E, DAVIES A G. 2010. Morphological controls in sandy estuaries: The influence of tidal flats and bathymetry on sediment transport[J]. Ocean Dynamics, 60: 503-517.
19 ROELVINK D, RENIERS A. 2012. A Guide to modelling coastal morphology: Advances in coastal and ocean engineering[M]. Singapore: World Scientific: 274-274.
20 ROYAL HASKONING. 2011. Climate Change Adaptation Report, Report to DEFRA under the Adaptation Reporting Powers[M]. UK, Manchester: Mersey Docks and Harbour Company Ltd: 130-145.
21 SLY P G. 1989. Sediment dispersion Part 2: Characterization by size of sand fraction and percent mud[J]. Hydrobiologia, 176: 111-124.
22 SOULSBY R. 1997. Dynamics of marine sands: A manual for practical applications[M]. London: Thomas Telford: 65-71.
23 VAN DER WAL D, PYE K, NEAL A. 2002. Long-term morphological change in the Ribble Estuary, northwest England[J]. Marine Geology, 189: 249-266.
24 WALLINGFORD H R. 1990. Mersey barrage feasibility study—stage II. Hydraulic and sedimentation study, sand flux measurement, Report EX 2225[M]. UK, Oxfordshire: Wallingford: 193-196.
文章导航

/