海上强底水砂岩油藏CO2-EOR-S数值模拟研究*
作者简介:刘雪雁(1992—), 女, 山东省莱芜市人, 在读硕士研究生, 主要从事二氧化碳提高采收率及地质封存研究。E-mail: xueyanliu1992@163.com
收稿日期: 2017-01-06
要求修回日期: 2017-03-28
网络出版日期: 2017-09-22
基金资助
国家自然科学基金项目(41372256)
美国能源部KeyLogic资助项目(K6000-697)
Simulation of CO2-EOR-S in an offshore sandstone reservoir with strong bottom water
Received date: 2017-01-06
Request revised date: 2017-03-28
Online published: 2017-09-22
Supported by
National Natural Science Foundation of China (41372256)
KeyLogic Project of U.S. Department of Energy
Copyright
二氧化碳驱提高采收率及地质封存 (CO2-EOR-S)技术是目前实现温室气体减排和应对全球气候变暖最经济有效的手段之一。文章以珠江口盆地惠州21-1油田M10层为对象, 利用Petrel和CMG-GEM油藏数值模拟方法进行了注CO2驱提高采收率能力评价、注CO2流体状态方程拟合以及不同方案注采参数优化、合理方式优选, 以探讨该油层的CO2-EOR-S潜力。对比9个模拟方案结果表明: 1) 在不同开采条件下, 混相驱、近混相驱和非混相驱方案比例4︰3︰2; 混相驱方案的采收率提高效果最为明显, 相较于未注入CO2, 提高约5.48%~8.73%, 而近混相驱和非混相驱仅分别提高为2.96%~4.33%和2.01%~2.67%; 基于细管模拟结果 (最小混相压力约31MPa), 在M10原始地层压力条件下, CO2与原油达到近混相状态; 2) 模拟注入CO2五年, 采用两口井同时以41MPa的井底流压注入CO2效果最佳, 采收率从34.7%提高到43.4%, 累计产油量从2.22×106m3提高到2.78×106m3; 含水率从约96%降到约59%; 共注入CO2 9.2Mt, 封存6.7Mt, 占注入量的73%, 封存速率约1.33×106t·a-1; 3) 对于单井注入, 原油采收率与CO2封存量呈负相关影响, 而两口井注入条件下呈正相关, 因此增加注入井数有助于在提高采收率的同时加大封存量。
刘雪雁 , 李鹏春 , 周蒂 , 陈广浩 , CHEN Guanghao . 海上强底水砂岩油藏CO2-EOR-S数值模拟研究*[J]. 热带海洋学报, 2017 , 36(5) : 72 -82 . DOI: 10.11978/2017005
CO2 Enhanced Oil Recovery and Sequestration (CO2-EOR-S) is currently the most effective and economic technology for reducing CO2 emission from fossil fuels. To evaluate the CO2-EOR-S potential of M10 oil reservoir in the HZ21-1 oil field, we conducted a compositional simulation using Petrel and CMG-GEM reservoir simulators. We constructed a geological (including structures and facies) model first and then matched the oil production history and simulated CO2 injection in nine cases with different well patterns and bottom pressures. The results show that 1) the ratio of case number under miscible, near-miscible cases and immiscible conditions is 4︰3︰2, among which miscible flooding has the highest recovery factor (5.48%~8.73%) than the others and the Miscible Minimum Pressure (MMP) in M10 reservoir is about 31 MPa so that CO2 and oil could be near-miscible with oil under the condition of initial formation pressure; 2) the best case after CO2 injected five years is two injection wells with injection pressure at about 41 MPa, increasing oil recovery factor and cumulative oil production from 34.7% to 43.4% and 2.22×106 to 2.78×106 m3 respectively, while decreasing water cut from 96% to 59% with CO2 storage volume of 6.7 Mt, which takes 73% of the whole CO2 injection volume (9.2 Mt), and having a rate of CO2 storage on 1.33×106 t·a-1; 3) when CO2 was injected through one single injection well, the effects on oil recovery factor and CO2 storage volume would be a negative relation while it would turn to a positive relation through two injection wells, which means more injection wells would increase oil recovery factor and carbon storage volume synchronously.
Fig. 1 Top map with contour line of M10 reservoir图1 M10层顶面构造等值线图(《中国油气田开发志》总编纂委员会, 2013) |
Fig. 2 NS reservoir profile (a) and WE cross well section (b) with Gamma Ray (GR) logs for M10 reservoir图2 M10层近南北向油藏剖面 (a) 和近东西向过井沉积剖面图 (b) |
Fig. 3 Grids of M10 structural model图3 M10层构造模型网格剖分 |
Fig. 4 Well section for M10 reservoir with logging interpretation results. Curves from left to right are GR, sub-facies, permeability and porosity, respectively. GR data of #1 were based on Peng et al (2013) and the other five GR curves are based on the General Editorial Committee of Oil and Gas Field Development in China (2013). The black horizontal dotted line marks the top and bottom of M10 reservoir图4 M10层连井剖面测井数据解释对比图 |
Tab.1 Comparison of main parameters between M10 model and experiment data表1 M10层三维地质模型主要参数与油藏实测数据对比列表 |
油藏 | 模型 | 误差/% | |
---|---|---|---|
平均地层厚度/m | 40.2 | 41.7 | 4.23 |
平均孔隙度/% | 15.30 | 15.84 | 3.53 |
平均渗透率/μm2 | 0.205 | 0.212 | 3.41 |
注: 油藏数据引自文献《中国油气田开发志》总编纂委员会(2013)。 |
Fig. 5 3D model of porosity (a) and permeability (b) for M10 reservoir with z direction extended 10 times图5 M10层三维孔隙度(a)和渗透率(b)属性模型(z方向放大10倍) |
Tab.2 Lumping and mole fraction of the 8-component oil system for M10 model表2 M10模型中拟合归并的8组分原油成分 |
组分 | CO2 | C1 | C2 | C3 | C4 | C5 | C8 | C12+ |
---|---|---|---|---|---|---|---|---|
含量/% | 3.09065 | 47.4423 | 6.9656 | 2.6121 | 2.6121 | 1.7414 | 20.3062 | 15.2297 |
摩尔质量/(g·mol-1) | 44.01 | 16.04 | 30.07 | 44.10 | 58.121 | 72.15 | 107.00 | 237.00 |
Fig. 6 Results of 1D slim tube simulation图6 一维细管试验模拟结果 |
Fig. 7 Relative permeability curves of oil-gas-water phases and capillary curves based on field data (a) and modified process (b). Pcow is oil-water capillary pressure, Krw is relative permeability of water, Krow is oil relative water permeability, Pcog is gas-liquid capillary pressure, Krg is relative permeability of gas, and Krog is oil relative to gas permeability图7 油-水相对渗透率、毛管压力实测曲线 (a) 和调整结果 (b) |
Fig. 8 History matching and production predicting curves of M10 component model. Individual data points are field production data based on the General Editorial Committee of Oil and Gas Field Development in China (2013), and the dotted line is matching results of numerical modeling图8 M10层组分模型历史拟合和生产阶段预测曲线 |
Fig. 9 Contour maps of simulated results. Oil saturation distribution in 1990 (a) and at the beginning of CO2 injection in 2016 (b). The black dots represent production wells with two designed CO2 injection wells of I1 and I2. The CO2-EOR-S simulated process begun in September 2016 after injection wells were opened图9 等值线模拟结果图 |
Fig. 10 Curves of average formation pressure (a), recovery ratio (b) and CO2 storage (c) for nine cases图10 模拟结果对比曲线 |
Tab.3 CO2 injection settings表3 CO2注入方案设置及结果统计表 |
编号 | 注入井 | 注入压力/MPa | 平均地层压力/MPa | 驱替 机制 | 注入速率/(PV·a-1) | 注入HCPV |
---|---|---|---|---|---|---|
A1 | I1 | 35 | 29.85 | 非混相 | 0.010 | 0.399 |
A2 | I1 | 38 | 30.99 | 近混相 | 0.016 | 0.621 |
A3 | I1 | 41 | 33.72 | 混相 | 0.023 | 0.905 |
B1 | I2 | 35 | 29.79 | 非混相 | 0.009 | 0.342 |
B2 | I2 | 38 | 30.41 | 近混相 | 0.012 | 0.489 |
B3 | I2 | 41 | 31.67 | 混相 | 0.020 | 0.789 |
C1 | I1&I2 | 35 | 30.94 | 近混相 | 0.015 | 0.594 |
C2 | I1&I2 | 38 | 32.26 | 混相 | 0.022 | 0.865 |
C3 | I1&I2 | 41 | 34.69 | 混相 | 0.031 | 1.252 |
注: 平均地层压力为CO2注入过程中地层的平均压力, 平均地层压力为注入一年后至注入结束时地层最高和最低压力的平均值; 采收率为注CO2驱的采收率; 采收率提高程度为相对于未注CO2驱的采收率增加百分比; 未注CO2时采收率为34.68%。 |
Tab.4 CO2 sequestration queuing of nine cases表4 各方案CO2封存量统计表格 |
编号 | 采收 率/% | 采收率提高程度/% | 累积CO2 注入量/Mt | 累积CO2 生产量/Mt | CO2封存 量/Mt |
---|---|---|---|---|---|
A1 | 36.69 | 2.01 | 2.581 | 0.767 | 1.814 |
A2 | 37.64 | 2.96 | 4.241 | 0.776 | 3.466 |
A3 | 40.16 | 5.48 | 6.650 | 0.984 | 5.665 |
B1 | 37.35 | 2.67 | 2.195 | 1.034 | 1.161 |
B2 | 39.01 | 4.33 | 3.293 | 1.687 | 1.606 |
B3 | 41.41 | 6.73 | 5.593 | 3.298 | 2.295 |
C1 | 38.56 | 3.88 | 3.874 | 1.034 | 2.840 |
C2 | 40.64 | 5.96 | 5.969 | 1.520 | 4.450 |
C3 | 43.41 | 8.73 | 9.222 | 2.558 | 6.663 |
注: 采收率为注CO2驱的采收率; 采收率提高程度为相对于未注CO2驱的采收率增加百分比(未注CO2时采收率为34.68%); 累积CO2注入量、生产量和封存量均为地表条件下。 |
Fig. 11 Curves of CO2 storage mass and oil recovery factor for nine cases图11 各方案CO2封存量及采收率对比曲线 |
Fig. 12 Recovery factor, water cut and cumulative oil production curves of C3 case. The black line means stimulated results of CO2 injection, and the grey line is a reference with no CO2 injected. The curves of oil recovery factor, water cut and cumulative oil production correspond to long dashed, short dotted and solid lines, respectively图12 方案C3的采收率、含水率和累计产油量模拟结果曲线 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
《中国油气田开发志》总编纂委员会, 2013. 中国油气田开发志——南海东部油气区油气田卷[M]. 北京: 石油工业出版社.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC: 1-151.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
/
〈 | 〉 |