Journal of Tropical Oceanography >
Single-source, single-cable, long-array, seismic data processing in complex sea conditions of Dongsha sea area
Received date: 2019-09-26
Request revised date: 2019-12-17
Online published: 2020-07-27
Supported by
Foundation item: National Natural Science Foundation of China(41606030)
China Geological Survey Projects(DD20190216)
China Geological Survey Projects(DD20190212)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0208)
Copyright
ing at the characteristics of seismic data collected by single-source, single-cable, long-array under complex sea conditions of the Dongsha sea area for the first time, we propose an optimal technical solution for processing this kind of data. We have achieved good results in removing various noise interferences and different types of multiple-wave interferences, especially the severe interference of marine turbulence in the survey area. Under the premise of amplitude-preserving treatment, the bubble is suppressed, the wavelet is compressed, and the resolution of the seismic data is improved. Using high-density velocity analysis, we performed anisotropic bi-spectral non-hyperbolic move-out correction, making the wave group features and amplitude characteristics more obvious. Through reasonable regularization of bins, the coverage folds are uniform and the lateral resolution is improved. For the densely-distributed 2D seismic data, a 3D pre-stack time migration processing method is adopted. In this study, the single-source, single-cable, long-streamer, seismic data with severe noise interference are processed in the way of 3D seismic data processing. The processing highlights the effective information from the shallow to deep, especially the imaging quality improvement for the Mesozoic. More obviously, a set of effective processing procedures has been formed, which provides a technical basis for exploration and data processing in the adjacent areas in the future, and also provides a scientific basis for oil and gas exploration and evaluation of the Dongsha sea area.
XING Tao , ZHAN Wenhuan , LI Fuyuan , CHEN Xi . Single-source, single-cable, long-array, seismic data processing in complex sea conditions of Dongsha sea area[J]. Journal of Tropical Oceanography, 2020 , 39(4) : 91 -99 . DOI: 10.11978/2019097
图2 原始地震资料中的各种噪音干扰a. 炮集上电缆部分下沉导致接收道关闭; b. 炮集上电缆上浮至水面产生的噪音; c. 炮集上的多次波干扰 Fig. 2 Various noise disturbances in the original seismic data: (a) the receive channel is closed when the cable section on the shot gathers sinks; (b) severe noise when the cable on the shot gathers up to the sea surface; (c) the multiple-wave interference on the shot gathers |
表1 广州海洋地质调查局2016年东沙海域地震采集参数表Tab. 1 Seismicacquisition parameter in the seismic survey conducted by the Guangzhou Marine Geological Survey around Dongsha area in 2016 |
地震采集参数 | 参数值 |
---|---|
接收道数/道 | 480 |
道间距/m | 12.5 |
覆盖次数/次 | 120 |
炮间距/m | 25 |
采样率/ms | 2 |
记录长度/s | 8 |
震源容量/cu.in. | 5080 |
工作压力/psi. | 2000 |
最小偏移距/m | 175 |
原始面元大小 | 25m(纵向)×100m(横向) |
图6 组合法去多次波炮集效果图a. 原始数据; b. 自由表面相关多次波去除后; c. 组合法去多次波后 Fig. 6 The combination method to attenuate multiple waves: (a) raw shot gathers, (b) shot gathers after free surface multiples elimination, and (c) shot gathers after the joint application of methods |
[1] |
邓桂林, 2014. 组合方法压制多次波在南海某工区的应用[J]. 工程地球物理学报, 11(5):630-634
|
[2] |
邓桂林, 丁龙翔, 李福元, 等. 2019. 海洋长排列单源单缆准三维窄方位地震资料处理技术[J]. 物探与化探, 43(4):828-834.
|
[3] |
丁龙翔, 李福元, 张宝金, 2016. 南海北部某区块地震资料处理关键技术[J]. 工程地球物理学报, 13(4):491-495.
|
[4] |
郭梦秋, 赵彦良, 左胜杰, 等, 2012. 海上地震资料处理中的组合压制多次波技术[J]. 石油地球物理勘探, 47(4):537-544.
|
[5] |
郝沪军, 林鹤鸣, 杨梦雄, 等, 2001. 潮汕坳陷中生界--油气勘探的新领域[J]. 中国海上油气, 15(3):157-163.
|
[6] |
郝沪军, 施和生, 张向涛, 等, 2009. 潮汕坳陷中生界及其石油地质条件--基于LF35-1-1探索井钻探结果的讨论[J]. 中国海上油气, 21(3):151-156.
|
[7] |
胡卫剑, 江为为, 郝天珧, 等, 2011. 南海前新生代残留盆地分布综合地球物理研究[J]. 地球物理学报, 54(12):3315-3324.
|
[8] |
黄妍丹, 许洁馨, 刘军亮, 等, 2018. 基于实测资料的南海北部台风“海鸥”致近惯性振荡研究[J]. 热带海洋学报, 37(6):16-25.
|
[9] |
丘学林, 赵明辉, 徐辉龙, 等, 2012. 南海深地震探测的重要科学进程: 回顾和展望[J]. 热带海洋学报, 31(3):1-9.
|
[10] |
施剑, 刘江平, 陈刚, 等, 2017. 陆架浅水区自由表面多次波压制方法[J]. 地球物理学进展, 32(2):902-910.
|
[11] |
王国纯, 1994. 中国东部海域中生界地质特征及含油气前景[J]. 中国海上油气(地质), 8(2):91-98.
|
[12] |
吴仕虎, 2014. 南海北部中生代陆缘海盆地沉积演化过程[D]. 成都: 成都理工大学. 1-103.
|
[13] |
夏戡原, 黄慈流, 2000. 南海中生代特提斯期沉积盆地的发现与找寻中生代含油气盆地的前景[J]. 地学前缘, 7(3):227-238.
|
[14] |
邢涛, 陈宏文, 张宝金, 2015. 西沙海域天然气水合物地震资料高密度双谱速度分析技术探讨[J]. 海洋与湖沼, 46(2):272-277.
|
[15] |
熊忠, 张敏强, 高顺莉, 等, 2016. 南黄海中、古生界地震波场反射特征模拟与采集技术攻关[J]. 地球物理学进展, 31(5):2172-2180.
|
[16] |
徐华宁, 舒虎, 李丽青, 等, 2009. 单源单缆方式采集的天然气水合物三维地震数据处理技术[J]. 地球物理学进展, 24(5):1801-1806.
|
[17] |
阎贫, 王彦林, 郑红波, 2011. 南海北部白云凹陷-东沙岛西南海区的浅地层探测与深水沉积特点[J]. 热带海洋学报, 30(2):115-122.
|
[18] |
杨少坤, 林鹤鸣, 郝沪军, 2002. 珠江口盆地东部中生界海相油气勘探前景[J]. 石油学报, 23(5):28-33.
|
[19] |
姚伯初, 曾维军, 陈艺中, 等, 1995. 南海北部陆缘东部中生代沉积的地震反射特征[J]. 海洋地质与第四纪地质, 15(1):81-90.
|
[20] |
张浩, 邵磊, 张功成, 等, 2015. 南海始新世海相地层分布及油气地质意义[J]. 地球科学—中国地质大学学报, 40(4):660-670.
|
[21] |
张莉, 2010. 南海北部中生界形成演化模式及其与中生界分布、油气地质条件关系研究[D]. 广州: 中山大学.
|
[22] |
张连群, 陈宝书, 李松康, 等, 2018. 白云凹陷陆架—陆坡区多次波压制技术[J]. 石油地球物理勘探, 53(2):236-242.
|
[23] |
张旭东, 文鹏飞, 徐云霞, 等, 2015. 双源单缆方式采集的天然气水合物三维地震数据采集脚印分析与压制处理[J]. 海洋地质前沿, 31(9):55-61.
|
[24] |
赵旭, 阎贫, 王彦林, 等, 2016. 东沙西南海区泥火山的分布及其物质来源层位[J]. 热带海洋学报, 35(5):88-96.
|
[25] |
郑红波, 阎贫, 王彦林, 2014. 南海南部礼乐海区二维地震资料的高分辨率处理方法[J]. 热带海洋学报, 33(5):67-73.
|
[26] |
周蒂, 孙珍, 陈汉宗, 等, 2005. 南海及其围区中生代岩相古地理和构造演化[J]. 地学前缘, 12(3):204-218.
|
[27] |
周庆杰, 2015. 南海北部陆坡白云凹陷区海底滑坡的识别与特征分析[D]. 青岛: 国家海洋局第一海洋研究所.
|
[28] |
周洋, 刘海龄, 朱荣伟, 等, 2016. 南海北部陆缘古双峰-笔架碰撞造山带空间展布特征[J]. 海洋地质与第四纪地质, 36(4):77-84.
|
/
〈 |
|
〉 |