Marine Geophysics

Magnetic structure of the oceanic lithosphere and its dynamic implications

  • LIU Qingsong ,
  • LIU Jianxing ,
  • DUAN Zongqi
Expand
  • 1. The Tethys Research Center, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-02-17

  Online published: 2016-02-02

Supported by

Chinese Continental Shelf Deep Drilling Program (GZH201100202); National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03); National Natural Science Foundation of China (41430962, 41374073)

Abstract

In the last century, paleomagnetism, especially studies on magnetic properties of oceanic crusts, have greatly promoted the development of the plate tectonics theory and the International Ocean Drilling Program. The oceanic crust carries two kinds of magnetic information: magnetic properties of the magnetic assemblage in the oceanic crust, and the paleomagnetic signals carried by these minerals. Generally, the oceanic crust consists of a lower oceanic lithosphere (including pillow basalt, gabbro and peridotite) and overlying marine sediments. This paper summarized the magnetic structure of the oceanic crust, and then discussed relevant dynamic processes including chronological indications of oceanic magnetic anomalies, dynamic processes of the Earth’s interior, kinematics of the oceanic crust, and evolution of hotspots. Then, we systematically summarized major progresses of magnetic studies of the South China Sea. Key scientific topics related to magnetic properties of oceanic crusts in future studies were also discussed.

Cite this article

LIU Qingsong , LIU Jianxing , DUAN Zongqi . Magnetic structure of the oceanic lithosphere and its dynamic implications[J]. Journal of Tropical Oceanography, 2016 , 35(1) : 38 -47 . DOI: 10.11978/2015026

References

1 李付成, 孙珍, 张云帆, 等, 2012. 海山的倾斜俯冲对上覆板块变形的影响[J]. 地球物理学进展, 27: 1406-1415. LI F C, SUN Z, ZHANG Y F, et al, 2012. Influence of oblique seamount subduction on the deformation of upper plate[J]. Progress in Geophys, 27(4): 1406-1415.
2 李家彪, 金翔龙, 阮爱国, 等, 2004. 马尼拉海沟增生楔中段的挤入构造[J]. 科学通报, 49(10): 1000-1008. LI J B, JIN X L, RUAN A G, et al, 2004. Diapiric structure of accretionary middle piece in Manila trench[J]. Chinese Science Bulletin, 49(10): 1000-1008.
3 朱守彪, 邢会林, 谢富仁, 等, 2008. 地震发生过程的有限单元法模拟——以苏门答腊俯冲带上的大地震为例[J]. 地球物理学报, 51: 460-468. ZHU S B, XING H L, XIE F R, et al, 2008. Simulation of earthquake processes by finite element method: The case of megathrust earthquakes on the Sumatra subduction zone[J]. Chinese Journal of Geophysics, 2008, 51(2): 460-468.
4 ABERCROMBIE R E, ANTOLIK M, FELZER K, et al, 2001. The 1994 Java tsunami earthquake: Slip over a subducting seamount[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 106: 6595-6607.
5 BABA T, HORI T, HIRANO S, et al, 2001. Deformation of a seamount subducting beneath an accretionary prism: Constraints from numerical simulation[J]. Geophysical Research Letters, 28: 1827-1830.
6 BANGS N L B, GULICK S P S, SHIPLEY T H, 2006. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone [J]. Geology, 34: 701.
7 BILEK S L, 2007. Influence of subducting topography on earthquake rupture[J]. The Seismogenic Zone of Subduction Thrust Faults: 123-146.
8 CLOOS M, 1992. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture[J]. Geology, 20: 601.
9 COULBOURN W T, HILL P J, BERGERSEN D D, 1989. Machias Seamount, Western Samoa: Sediment remobilization, tectonic dismemberment and subduction of a guyot[J]. Geo-marine letters, 9: 119-125.
10 DOMINGUEZ S, LALLEMAND S, MALAVIEILLE J, et al, 1998. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 293: 207-224.
11 DOMINGUEZ S, MALAVIEILLE J, LALLEMAND S, 2000. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments[J]. Tectonics, 19: 182-196.
12 FRYER P, AMBOS E L, HUSSONG D M, 1985. Origin and emplacement of Mariana forearc seamounts[J]. Geology, 13: 774.
13 GAO X, WANG K, 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations[J]. Science, 345: 1038-1041.
14 IGARASHI T, MATSUZAWA T, HASEGAWA A, 2003. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 108.
15 KELLEHER J, MCCANN W, 1976. Buoyant zones, great earthquakes, and unstable boundaries of subduction[J]. Journal of Geophysical Research, 81: 4885-4896.
16 KODAIRA S, 2000. Subducted Seamount Imaged in the Rupture Zone of the 1946 Nankaido Earthquake[J]. Science, 289: 104-106.
17 LALLEMAND S E, SCHN RLE P, MALAVIEILLE J, 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 99: 12033-12055.
18 LI F, SUN Z, HU D, et al, 2013. Crustal structure and deformation associated with seamount subduction at the north Manila Trench represented by analog and gravity modeling[J]. Marine Geophysical Research, 34: 393-406.
19 MATSUZAWA T, IGARASHI T, HASEGAWA A, 2002. Characteristic small‐earthquake sequence off Sanriku, northeastern Honshu, Japan[J]. Geophysical Research Letters, 29: 38-1-38-4.
20 NISHIZAWA A, KANEDA K, WATANABE N, et al, 2009. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench[J]. Earth Planets Space, 61: e5-e8.
21 ORD A, 1991. Deformation of rock: a pressure-sensitive, dilatant material[J]. Pure and Applied Geophysics, 137: 337-366.
22 PARK J O, TSURU T, KANEDA Y, et al, 1999. A subducting seamount beneath the Nankai accretionary prism off Shikoku, southwestern Japan[J]. Geophysical Research Letters, 26: 931-934.
23 PEDLEY K L, BARNES P M, PETTINGA J R, et al, 2010. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand[J]. Marine Geology, 270: 119-138.
24 POLYANSKY O, KOROBEYNIKOV S, BABICHEV A, et al, 2014. Numerical modeling of mantle diapirism as a cause of intracontinental rifting[J]. Izvestiya, Physics of the Solid Earth, 50: 839-852.
25 SINGH S C, HANANTO N, MUKTI M, et al, 2011. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 4: 308-311.
26 SUN Z, ZHOU D, ZHONG Z, et al, 2006. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China Series D: Earth Sciences, 49: 1053-1069.
27 WATTS A B, KOPPERS A A, ROBINSON D P, 2010. Seamount subduction and earthquakes[J]. Oceanography, 23(1): 166-173.
28 YAMAZAKI T, OKAMURA Y, 1989. Subducting seamounts and deformation of overriding forearc wedges around Japan[J]. Tectonophysics, 160: 207-229.
Outlines

/