[1] |
BUCHMANN K, 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals[J]. Frontiers in Immunology, 5:459
doi: 10.3389/fimmu.2014.00459
pmid: 25295041
|
[2] |
CHAI LIMIN, DAI LINGYUN, CHE YONGZHE, et al, 2009. LRRC19, a novel member of the leucine-rich repeat protein family, activates NF-κB and induces expression of proinflammatory cytokines[J]. Biochemical & Biophysical Research Communications, 388(3):543-548.
pmid: 19679103
|
[3] |
DELLEDONNE M, POLVERARI A, MURGIA I, 2003. The functions of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response[J]. Antioxidants & Redox Signaling, 5(1):33-41.
|
[4] |
HUANG QINGSONG, YU MINGJIA, CHEN HONGMEI, et al, 2018. LRFN (leucine-rich repeat and fibronectin type-III domain-containing protein) recognizes bacteria and promotes hemocytic phagocytosis in the Pacific oyster Crassostrea gigas[J]. Fish & Shellfish Immunology, 72:622-628.
doi: 10.1016/j.fsi.2017.11.049
pmid: 29190588
|
[5] |
HUANG SHENGFENG, YUAN SHAOCHUN, GUO LEI, et al, 2008. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity[J]. Genome Research, 18(7):1112-1126.
pmid: 18562681
|
[6] |
JIN M S, LEE J O, 2008. Structures of the toll-like receptor family and its ligand complexes[J]. Immunity, 29(2):182-191.
doi: 10.1016/j.immuni.2008.07.007
pmid: 18701082
|
[7] |
KAWAI T, AKIRA S, 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nature Immunology, 11(5):373-384.
doi: 10.1038/ni.1863
pmid: 20404851
|
[8] |
KOBE B, KAJAVA A V, 2001. The leucine-rich repeat as a protein recognition motif[J]. Current Opinion in Structural Biology, 11(6):725-732.
doi: 10.1016/s0959-440x(01)00266-4
pmid: 11751054
|
[9] |
KUNKEL B N, BROOKS D M, 2002. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 5(4):325-331.
doi: 10.1016/s1369-5266(02)00275-3
pmid: 12179966
|
[10] |
LI YIQUN, SONG XIAORUI, WANG WEILIN, et al, 2017. The hematopoiesis in gill and its role in the immune response of Pacific oyster Crassostrea gigas against secondary challenge with Vibrio splendidus[J]. Developmental & Comparative Immunology, 71:59-69.
|
[11] |
LI ZHAOJIE, ZHANG SHICUI, LIU QINGHUI, 2008. Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity[J]. PLoS One, 3(4):e1940.
pmid: 18398466
|
[12] |
LIU CONGHUI, JIANG SHUAI, WANG MENGQIANG, et al, 2016. A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release[J]. Developmental & Comparative Immunology, 61:136-144.
pmid: 27032602
|
[13] |
LIU HOURONG, SONG CHENGWEN, NING JUNHAO, et al, 2020. Identification, functional characterization and the potential role of variable lymphocyte receptor EsVLRA from Eriocheir sinensis in response to secondary challenge after Vibrio parahaemolyticus vaccine[J]. Fish & Shellfish Immunology, 98:201-209.
doi: 10.1016/j.fsi.2020.01.011
pmid: 31923564
|
[14] |
MATSUSHIMA N, TAKATSUKA S, MIYASHITA H, et al, 2019. Leucine rich repeat proteins: sequences, mutations, structures and diseases[J]. Protein & Peptide Letters, 26(2):108-131.
doi: 10.2174/0929866526666181208170027
pmid: 30526451
|
[15] |
MEDZHITOV R, 2007. Recognition of microorganisms and activation of the immune response[J]. Nature, 449(7164):819-826.
pmid: 17943118
|
|
MEDZHITOV R, 2007. Recognition of microorganisms and activation of the immune response[J]. Nature, 449(7164):819-826.
pmid: 17943118
|
[16] |
NG A, XAVIER R J, 2011a. Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity[J]. Autophagy, 7(9):1082-1084.
pmid: 21606681
|
|
NG A, XAVIER R J, 2011a. Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity[J]. Autophagy, 7(9):1082-1084.
pmid: 21606681
|
[17] |
NG A C Y, EISENBERG J M, HEATH R J W, et al, 2011b. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(S1):4631-4638.
|
|
NG A C Y, EISENBERG J M, HEATH R J W, et al, 2011b. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(S1):4631-4638.
|
[18] |
PÅLSSON-MCDERMOTT E M, O'NEILL L A J, 2007. Building an immune system from nine domains[J]. Biochemical Society Transactions, 35(Pt 6):1437-1444.
pmid: 18031241
|
|
PÅLSSON-MCDERMOTT E M, O'NEILL L A J, 2007. Building an immune system from nine domains[J]. Biochemical Society Transactions, 35(Pt 6):1437-1444.
pmid: 18031241
|
[19] |
PEART J R, MESTRE P, LU RUI, et al, 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus[J]. Current Biology, 15(10):968-973.
pmid: 15916955
|
|
PEART J R, MESTRE P, LU RUI, et al, 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus[J]. Current Biology, 15(10):968-973.
pmid: 15916955
|
[20] |
ROTHBERG J M, JACOBS J R, GOODMAN C S, et al, 1990. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains[J]. Genes & Development, 4:2169-2187.
doi: 10.1101/gad.4.12a.2169
pmid: 2176636
|
|
ROTHBERG J M, JACOBS J R, GOODMAN C S, et al, 1990. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains[J]. Genes & Development, 4:2169-2187.
doi: 10.1101/gad.4.12a.2169
pmid: 2176636
|
[21] |
SHOKAL U, ELEFTHERIANOS I, 2017. Evolution and function of thioester-containing proteins and the complement system in the innate immune response[J]. Frontiers in Immunology, 8(1):759.
|
|
SHOKAL U, ELEFTHERIANOS I, 2017. Evolution and function of thioester-containing proteins and the complement system in the innate immune response[J]. Frontiers in Immunology, 8(1):759.
|
[22] |
SITARAM N, 2006. Antimicrobial peptides with unusual amino acid compositions and unusual structures[J]. Current Medicinal Chemistry, 13(6):679-696.
doi: 10.2174/092986706776055689
pmid: 16529559
|
|
SITARAM N, 2006. Antimicrobial peptides with unusual amino acid compositions and unusual structures[J]. Current Medicinal Chemistry, 13(6):679-696.
doi: 10.2174/092986706776055689
pmid: 16529559
|
[23] |
SRIPHAIJIT T, SENAPIN S, 2007. High expression of a novel leucine-rich repeat protein in hemocytes and the lymphoid organ of the black tiger shrimp Penaeus monodon[J]. Fish & Shellfish Immunology, 22(3):264-271.
pmid: 16926101
|
|
SRIPHAIJIT T, SENAPIN S, 2007. High expression of a novel leucine-rich repeat protein in hemocytes and the lymphoid organ of the black tiger shrimp Penaeus monodon[J]. Fish & Shellfish Immunology, 22(3):264-271.
pmid: 16926101
|
[24] |
VAN LOOKEREN CAMPAGNE M, WIESMANN C, BROWN E J, 2007. Macrophage complement receptors and pathogen clearance[J]. Cellular Microbiology, 9(9):2095-2102.
doi: 10.1111/j.1462-5822.2007.00981.x
pmid: 17590164
|
|
VAN LOOKEREN CAMPAGNE M, WIESMANN C, BROWN E J, 2007. Macrophage complement receptors and pathogen clearance[J]. Cellular Microbiology, 9(9):2095-2102.
doi: 10.1111/j.1462-5822.2007.00981.x
pmid: 17590164
|
[25] |
WANG MENGQIANG, WANG LINGLING, GUO YING, et al, 2016a. An LRR-only protein representing a new type of pattern recognition receptor in Chlamys farreri[J]. Developmental & Comparative Immunology, 54(1):145-155.
doi: 10.1016/j.dci.2015.09.006
pmid: 26385592
|
|
WANG MENGQIANG, WANG LINGLING, GUO YING, et al, 2016a. An LRR-only protein representing a new type of pattern recognition receptor in Chlamys farreri[J]. Developmental & Comparative Immunology, 54(1):145-155.
doi: 10.1016/j.dci.2015.09.006
pmid: 26385592
|
[26] |
WANG MENGQIANG, WANG LINGLING, XIN LUSHENG, et al, 2016b. Two novel LRR-only proteins in Chlamys farreri: Similar in structure, yet different in expression profile and pattern recognition[J]. Developmental & Comparative Immunology, 59:99-109.
doi: 10.1016/j.dci.2016.01.013
pmid: 26826425
|
|
WANG MENGQIANG, WANG LINGLING, XIN LUSHENG, et al, 2016b. Two novel LRR-only proteins in Chlamys farreri: Similar in structure, yet different in expression profile and pattern recognition[J]. Developmental & Comparative Immunology, 59:99-109.
doi: 10.1016/j.dci.2016.01.013
pmid: 26826425
|
[27] |
WANG XIALU, ZHANG YUEQI, ZHANG RONG, et al, 2019. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens[J]. Current Opinion in Insect Science, 33:105-110.
doi: 10.1016/j.cois.2019.05.004
pmid: 31358188
|
|
WANG XIALU, ZHANG YUEQI, ZHANG RONG, et al, 2019. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens[J]. Current Opinion in Insect Science, 33:105-110.
doi: 10.1016/j.cois.2019.05.004
pmid: 31358188
|
[28] |
WANG XIANWEI, GAO JIE, XU YIHUI, et al, 2017b. Novel pattern recognition receptor protects shrimp by preventing bacterial colonization and promoting phagocytosis[J]. Journal of Immunology, 198(8):3045-3057.
|
|
WANG XIANWEI, GAO JIE, XU YIHUI, et al, 2017b. Novel pattern recognition receptor protects shrimp by preventing bacterial colonization and promoting phagocytosis[J]. Journal of Immunology, 198(8):3045-3057.
|
[29] |
WANG XIUDAN, WANG MENGQIANG, XU QINGSONG, et al, 2017c. Two novel LRR and Ig domain-containing proteins from oyster Crassostrea gigas function as pattern recognition receptors and induce expression of cytokines[J]. Fish & Shellfish Immunology, 70:308-318.
doi: 10.1016/j.fsi.2017.09.023
pmid: 28889011
|
|
WANG XIUDAN, WANG MENGQIANG, XU QINGSONG, et al, 2017c. Two novel LRR and Ig domain-containing proteins from oyster Crassostrea gigas function as pattern recognition receptors and induce expression of cytokines[J]. Fish & Shellfish Immunology, 70:308-318.
doi: 10.1016/j.fsi.2017.09.023
pmid: 28889011
|
[30] |
ZHANG LINLIN, LI LI, ZHANG GUOFAN, 2011. A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates[J]. Fish & Shellfish Immunology, 30(2):653-660.
doi: 10.1016/j.fsi.2010.12.023
pmid: 21195773
|
|
ZHANG LINLIN, LI LI, ZHANG GUOFAN, 2011. A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates[J]. Fish & Shellfish Immunology, 30(2):653-660.
doi: 10.1016/j.fsi.2010.12.023
pmid: 21195773
|
[31] |
ZHANG YANG, HE XIAOCUI, YU FENG, et al, 2013. Characteristic and functional analysis of toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity[J]. PLoS One, 8(10):e76464.
doi: 10.1371/journal.pone.0076464
pmid: 24098508
|
|
ZHANG YANG, HE XIAOCUI, YU FENG, et al, 2013. Characteristic and functional analysis of toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity[J]. PLoS One, 8(10):e76464.
doi: 10.1371/journal.pone.0076464
pmid: 24098508
|