[1] |
BARNES R O, GOLDBERG E D, 1976. Methane production and consumption in anoxic marine sediments[J]. Geology, 45:297-300.
|
[2] |
BLAIR N E, ALLER R C, 1995. Anaerobic methane oxidation on the Amazon shelf[J]. Geochimica et Cosmochimica Acta, 59(18):3707-3715.
doi: 10.1016/0016-7037(95)00277-7
|
[3] |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al, 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 407(6804):623-626.
doi: 10.1038/35036572
|
[4] |
BURNS S J, 1998. Carbon isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon fan sediments[J]. Geochimica et Cosmochimica Acta, 62(5):797-804.
doi: 10.1016/S0016-7037(98)00035-0
|
[5] |
CHEN DUOFU, HUANG YONGYANG, YUAN XUNLAI, et al, 2005. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 22(5):613-621.
doi: 10.1016/j.marpetgeo.2005.05.002
|
[6] |
CHEN SONGCAN, MUSAT N, LECHTENFELD O J, et al, 2019. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 568(7750):108-111.
doi: 10.1038/s41586-019-1063-0
|
[7] |
CHISTOSERDOVA L, VORHOLT J A, LIDSTROM M E, 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea[J]. Genome Biology, 6(2):208.
doi: 10.1186/gb-2005-6-2-208
|
[8] |
DEKAS A E, CONNON S A, CHADWICK G L, et al, 2016. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses[J]. The ISME Journal, 10(3):678-692.
doi: 10.1038/ismej.2015.145
|
[9] |
DHILLON A, LEVER M, LLOYD K G, et al, 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin[J]. Applied and Environmental Microbiology, 71(8):4592-4601.
doi: 10.1128/AEM.71.8.4592-4601.2005
|
[10] |
ETIOPE G, PANIERI G, FATTORINI D, et al, 2014. A thermogenic hydrocarbon seep in shallow Adriatic Sea (Italy): gas origin, sediment contamination and benthic foraminifera[J]. Marine and Petroleum Geology, 57:283-293.
doi: 10.1016/j.marpetgeo.2014.06.006
|
[11] |
ETTWIG K F, ZHU BAOLI, SPETH D, et al, 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(45):12792-12796.
|
[12] |
EVANS P N, PARKS D H, CHADWICK G L, et al, 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics[J]. Science, 350(6259):434-438.
doi: 10.1126/science.aac7745
|
[13] |
FRANKENBERG C, MEIRINK J F, VAN WEELE M, et al, 2005. Assessing methane emissions from global space-borne observations[J]. Science, 308(5724):1010-1014.
doi: 10.1126/science.1106644
|
[14] |
GIRGUIS P R, ORPHAN V J, HALLAM S J, et al, 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor[J]. Applied and Environmental Microbiology, 69(9):5472-5482.
doi: 10.1128/AEM.69.9.5472-5482.2003
|
[15] |
GLASS J B, YU HANG, STEELE J A, et al, 2014. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments[J]. Environmental Microbiology, 16(6):1592-1611.
doi: 10.1111/emi.2014.16.issue-6
|
[16] |
GREEN-SAXENA A, DEKAS A E, DALLESKA N F, et al, 2014. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane[J]. The ISME Journal, 8(1):150-163.
doi: 10.1038/ismej.2013.147
|
[17] |
HAHN C J, LASO-PÉREZ R, VULCANO F, et al, 2020. “Candidatus Ethanoperedens,” a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane[J]. mBio, 11(2):e00600-20.
|
[18] |
HALLAM S J, GIRGUIS P R, PRESTON C M, et al, 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea[J]. Applied and Environmental Microbiology, 69(9):5483-5491.
doi: 10.1128/AEM.69.9.5483-5491.2003
|
[19] |
HALLAM S J, PUTNAM N, PRESTON C M, et al, 2004. Reverse methanogenesis: testing the hypojournal with environmental genomics[J]. Science, 305(5689):1457-1462.
doi: 10.1126/science.1100025
|
[20] |
HANSON R S, HANSON T E, 1996. Methanotrophic bacteria[J]. Microbiological Reviews, 60(2):439-471.
doi: 10.1128/MR.60.2.439-471.1996
|
[21] |
HENSEN C, ZABEL M, PFEIFER K, et al, 2003. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J]. Geochimica et Cosmochimica Acta, 67(14):2631-2647.
doi: 10.1016/S0016-7037(03)00199-6
|
[22] |
HOUGHTON J T, JENKINS G J, EPHRAUMS J J, 1992. Climate Change: The IPCC Scientific Assessment[M]. London: Cambridge University Press: 18-23.
|
[23] |
JOYE S B, 2020. The geology and biogeochemistry of hydrocarbon seeps[J]. Annual Review of Earth and Planetary Sciences, 48:205-231.
doi: 10.1146/annurev-earth-063016-020052
|
[24] |
KRÜGER M, MEYERDIERKS A, GLÖCKNER F O, et al, 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically[J]. Nature, 426(6968):878-881.
doi: 10.1038/nature02207
|
[25] |
LEU A O, CAI C, MCILROY S J, et al, 2020. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae[J]. The ISME Journal, 14(4):1030-1041.
doi: 10.1038/s41396-020-0590-x
|
[26] |
LUTON P E, WAYNE J M, SHARP R J, et al, 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill[J]. Microbiology, 148(11):3521-3530.
doi: 10.1099/00221287-148-11-3521
|
[27] |
MARLOW J J, STEELE J A, ZIEBIS W, et al, 2014. Carbonate- hosted methanotrophy represents an unrecognized methane sink in the deep sea[J]. Nature Communications, 5:5094.
doi: 10.1038/ncomms6094
|
[28] |
MARTIN W, MÜLLER M, 1998. The hydrogen hypojournal for the first eukaryote[J]. Nature, 392(6671):37-41.
doi: 10.1038/32096
|
[29] |
MCGLYNN S E, CHADWICK G L, KEMPES C P, et al, 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia[J]. Nature, 526(7574):531-535.
doi: 10.1038/nature15512
|
[30] |
MEISTER P, WIEDLING J, LOTT C, et al, 2018. Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago (Italy)[J]. PLoS One, 13(12):e0207305.
doi: 10.1371/journal.pone.0207305
|
[31] |
MICHAELIS W, SEIFERT R, NAUHAUS K, et al, 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 297(5583):1013-1015.
doi: 10.1126/science.1072502
|
[32] |
MOORE T S, MURRAY R W, KURTZ A C, et al, 2004. Anaerobic methane oxidation and the formation of dolomite[J]. Earth and Planetary Science Letters, 229(1-2):141-154.
doi: 10.1016/j.epsl.2004.10.015
|
[33] |
NAUHAUS K, ALBRECHT M, ELVERT M, et al, 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J]. Environmental Microbiology, 9(1):187-196.
doi: 10.1111/emi.2007.9.issue-1
|
[34] |
NORÐI K A, THAMDRUP B, SCHUBERT C J, 2013. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment[J]. Limnology and Oceanography, 58(2):546-554.
doi: 10.4319/lo.2013.58.2.0546
|
[35] |
NUNOURA T, OIDA H, TOKI T, et al, 2006. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough[J]. FEMS Microbiology Ecology, 57(1):149-157.
doi: 10.1111/fem.2006.57.issue-1
|
[36] |
ORPHAN V J, HINRICHS K U, USSLER III W, et al, 2001a. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 67(4):1922-1934.
doi: 10.1128/AEM.67.4.1922-1934.2001
|
[37] |
ORPHAN V J, HOUSE C H, HINRICHS K U, et al, 2001b. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 293(5529):484-487.
doi: 10.1126/science.1061338
|
[38] |
ORPHAN V J, HOUSE C H, HINRICHS K U, et al, 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(11):7663-7668.
|
[39] |
PENG XIAOTONG, GUO ZIXIAO, CHEN SHUN, et al, 2017. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 205:1-13.
doi: 10.1016/j.gca.2017.02.010
|
[40] |
PERNTHALER A, DEKAS A E, BROWN C T, et al, 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(19):7052-7057.
|
[41] |
RAGHOEBARSING A A, POL A, VAN DE PAS-SCHOONEN K T, et al, 2006. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 440(7086):918-921.
doi: 10.1038/nature04617
|
[42] |
REEBURGH W S, 1976. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 28(3):337-344.
doi: 10.1016/0012-821X(76)90195-3
|
[43] |
REEBURGH W S, 1996. “Soft spots” in the global methane budget[M]// LIDSTROM M E, TABITA F R. Microbial growth on C1 compounds. Dordrecht: Springer: 334-342.
|
[44] |
REEBURGH W S, 2007. Oceanic methane biogeochemistry[J]. Chemical Reviews, 107(2):486-513.
doi: 10.1021/cr050362v
|
[45] |
RIEDINGER N, FORMOLO M J, LYONS T W, et al, 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments[J]. Geobiology, 12(2):172-181.
doi: 10.1111/gbi.2014.12.issue-2
|
[46] |
SAPIR A, DILLMAN A R, CONNON S A, et al, 2014. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea[J]. Frontiers in Microbiology, 5:43.
|
[47] |
SCHINK B, 1997. Energetics of syntrophic cooperation in methanogenic degradation[J]. Microbiology and Molecular Biology Reviews, 61(2):262-280.
doi: 10.1128/.61.2.262-280.1997
|
[48] |
SEITZ K W, DOMBROWSKI N, EME L, et al, 2019. Asgard archaea capable of anaerobic hydrocarbon cycling[J]. Nature Communications, 10(1):1822.
doi: 10.1038/s41467-019-09364-x
|
[49] |
SIVAN O, ADLER M, PEARSON A, et al, 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane[J]. Limnology and Oceanography, 56(4):1536-1544.
doi: 10.4319/lo.2011.56.4.1536
|
[50] |
SIVAN O, ANTLER G, TURCHYN A V, et al, 2014. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(40):E4139-E4147.
|
[51] |
SUESS E, 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 103(7):1889-1916.
doi: 10.1007/s00531-014-1010-0
|
[52] |
TREUDE T, NIGGEMANN J, KALLMEYER J, et al, 2005. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 69(11):2767-2779.
doi: 10.1016/j.gca.2005.01.002
|
[53] |
WEGENER G, NIEMANN H, ELVERT M, et al, 2008. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 10(9):2287-2298.
doi: 10.1111/emi.2008.10.issue-9
|
[54] |
ZEHNDER A J, BROCK T D, 1980. Anaerobic methane oxidation: occurrence and ecology[J]. Applied and Environmental Microbiology, 39(1):194-204.
doi: 10.1128/AEM.39.1.194-204.1980
|