联合星载光学和SAR影像的漳江口红树林与互花米草遥感监测
作者简介:董迪(1990—), 女, 湖北省黄冈市人, 工程师, 博士, 主要从事海洋遥感, 海洋中尺度涡和内波的研究。E-mail: dongdide90@126.com
*感谢汪超在数据处理方面提供的帮助, 感谢各位审稿专家对本文提出的宝贵意见。
Editor: 殷波
收稿日期: 2019-07-09
要求修回日期: 2019-10-12
网络出版日期: 2020-03-10
基金资助
地理国情监测国家测绘地理信息局重点实验室开放基金(2017NGCM08)
广东省自然科学基金-博士启动(2018A030310032)
广东省海洋遥感重点实验室开放基金(2017B030301005-LORS1806)
版权
Integrating spaceborne optical and SAR imagery for monitoring mangroves and Spartina alterniflora in Zhangjiang Estuary
Received date: 2019-07-09
Request revised date: 2019-10-12
Online published: 2020-03-10
Supported by
Open Fund of Key Laboratory of National Bureau of Surveying, Mapping and Geographic Information of China(2017NGCM08)
Natural Science Foundation of Guangdong Province of China(2018A030310032)
Guangdong Key Lab of Ocean Remote Sensing(South China Sea Institute of Oceanology Chinese Academy of Sciences)(2017B030301005-LORS1806)
Copyright
文章以福建省漳江口国家级红树林自然保护区为研究区, 提出了一种联合星载光学和合成孔径雷达(SAR)影像的红树林与互花米草分布的自动提取算法, 提取研究区内红树林和互花米草的空间分布。本研究选择2016年、2017年和2018年各一景低潮时的Sentinel-2 A光学影像数据, 获取植被和其他地物的光谱和纹理信息。算法首先基于归一化植被指数、增强型植被指数、地表水分指数以及数字高程模型的相关规则计算红树林和互花米草的潜在分布区; 通过随机森林分类算法区分红树林和互花米草, 2016年、2017年和2018年影像的分类总体精度和Kappa系数分别为98.53%和0.980、96.52%和0.952、98.71%和0.978, 分类效果良好; 使用当年所有Sentinel-1 A/B的SAR影像获得研究区的常年海水分布范围, 使用与海水交界的判据, 实现红树林、互花米草提取范围的优化。研究表明, 研究区2016年、2017年和2018年红树林总面积分别为56.85hm2、59.88hm2和58.61hm2, 互花米草总面积分别为109.23hm2、124.00hm2和142.39hm2, 与前人的研究成果在红树林和互花米草的空间分布和面积量级上有较好的一致性。
董迪 , 曾纪胜 , 魏征 , 严金辉 . 联合星载光学和SAR影像的漳江口红树林与互花米草遥感监测[J]. 热带海洋学报, 2020 , 39(2) : 107 -117 . DOI: 10.11978/2019063
Mangroves are an important type of coastal wetlands with ecological, environmental, economic, and cultural values. Spartina alterniflora is an invasive alien plant, threatening mangroves in China. The competition between Spartina alterniflora and mangroves is an important ecological issue along the southeast coast of China. Accurate monitoring of Spartina alterniflora and mangroves with remote sensing is of great significance for scientific protection of mangrove ecosystems. We propose a new method to monitor Spartina alterniflora and mangroves, integrating Sentinel-1 SAR and Sentinel-2 optical imagery. The Yunxiao National Nature Reserve of Mangroves, located in Zhangjiang Estuary, Fujian, China, is chosen as the study area. We select one Sentinel-2A image at low tide in 2016, 2017 and 2018 to obtain the spectral and texture information of vegetation and other objects. The new method comprises of three steps: 1) use rules related to NDVI, EVI, LSWI, and DEM to get the potential masks of Spartina alterniflora and mangroves; 2) use random forest classification method to distinguish Spartina alterniflora and mangroves further; and 3) use all Sentinel-1 A/B images in that year to get the estuarine yearlong seawater body, and use the criterion interaction with sea water to refine the detected Spartina alterniflora and mangroves. The random forest classifier is found suitable for mapping wetlands with overall accuracy of 98.53%, 96.52% and 98.71%, and Kappa coefficients of 0.980, 0.952 and 0.978 in 2016, 2017 and 2018, respectively. The total areas of the detected Spartina alterniflora and mangroves in the study region are 109.23 and 56.85 hm 2in 2016, 124.00 and 59.88 hm2 in 2017, and 142.39 and 58.61 hm2 in 2018, respectively, consistent with previous research results in terms of spatial distribution and magnitude of the area.
图1 研究区地理位置和样本数据的空间分布(a)和研究区2018年10月1日Sentinel-2 A遥感影像图(b)图a黑框内为研究区域; 图b中Sentinel-2 A影像波段组合为近红外波段、红波段和绿波段 Fig. 1 Location of the study area, spatial distribution of the sample data (a) and the Sentinel-2A image of the study area on October 1st, 2018 (b). The black rectangle in (a) denotes the study area; the band combination of the Sentinel-2 A image is near-infrared band, red band and green band |
表1 本研究中不同地物类型的样本信息Tab. 1 The sample information of different land covers in this study |
类别 | 红树林 | 互花米草 | 水 | 光滩 | 其他植被 |
---|---|---|---|---|---|
2016年与2017年 | 40 (10.13) | 38 (2.04) | 12 (21.25) | 22 (5.58) | 17 (0.47) |
2018年 | 40 (10.13) | 55 (2.70) | 12 (21.25) | 22 (5.58) | 22 (0.66) |
注: 括号外是样本矢量数, 括号里是该类型所有样本的面积(单位: hm2) |
图3 研究区2018年红树林和互花米草潜在分布区(a)、随机森林分类结果(b)和研究区常年海水分布(c)Fig. 3 The potential distribution masks of Spartina alterniflora and mangroves (a), the classified map using random forest (b), and the yearlong seawater mask in the study region (c) in 2018 |
表2 研究区2016年至2018年的分类混淆矩阵和精度评估Tab. 2 Confusion matrix and accuracy assessment for the study region from 2016 to 2018 |
年度 | 类别 | 红树林 | 互花米草 | 光滩 | 水 | 其他植被 | 制图精度/% | 用户精度/% |
---|---|---|---|---|---|---|---|---|
2016年 | 红树林 | 418 | 0 | 0 | 0 | 0 | 100.00 | 100.00 |
互花米草 | 0 | 99 | 3 | 0 | 0 | 97.06 | 100.00 | |
光滩 | 0 | 0 | 422 | 2 | 8 | 97.69 | 98.60 | |
水 | 0 | 0 | 0 | 318 | 1 | 99.69 | 98.76 | |
其他植被 | 0 | 0 | 3 | 2 | 17 | 77.27 | 65.39 | |
2017年 | 红树林 | 418 | 0 | 0 | 0 | 0 | 99.76 | 99.76 |
互花米草 | 0 | 90 | 1 | 9 | 2 | 94.74 | 94.74 | |
光滩 | 0 | 0 | 402 | 19 | 6 | 99.26 | 99.26 | |
水 | 0 | 5 | 0 | 319 | 0 | 91.93 | 91.93 | |
其他植被 | 1 | 0 | 2 | 0 | 19 | 70.37 | 70.37 | |
2018年 | 红树林 | 486 | 0 | 0 | 0 | 1 | 99.80 | 100.00 |
互花米草 | 0 | 76 | 5 | 0 | 0 | 93.83 | 98.70 | |
光滩 | 0 | 0 | 18 | 0 | 0 | 100.00 | 60.00 | |
水 | 0 | 0 | 0 | 628 | 2 | 99.68 | 100.00 | |
其他植被 | 0 | 1 | 7 | 0 | 18 | 69.23 | 85.71 |
表3 研究区2016年至2018年的分类精度Tab. 3 Summary of land cover classification accuracies in the study region from 2016 to 2018 |
2016年 | 2017年 | 2018年 | |
---|---|---|---|
总体精度/% | 98.53 | 96.52 | 98.71 |
Kappa系数 | 0.980 | 0.952 | 0.978 |
图4 不同时期研究区的Sentinel-2卫星影像和红树林、互花米草分布图a、b. 2016年1月25日; c、d. 2017年2月11日; e、f. 2018年10月1日。左侧影像波段组合为蓝波段、绿波段、红波段, 右侧影像波段组合为近红外波段、红波段、绿波段 |
Fig. 4 The Sentinel-2 satellite image (a) and distribution map of Spartina alterniflora and mangroves (b) on January 25th, 2016. The Sentinel-2 satellite image (c) and distribution map of Spartina alterniflora and mangroves (d) on February 11th, 2017. The Sentinel-2 satellite image (e) and distribution map of Spartina alterniflora and mangroves (f) on October 1st, 2018. The band combination of the Sentinel-2 A images on the left is blue band, green band and red band; and that on the right is near-infrared band, red band and green band |
表4 不同研究中漳江口红树林和互花米草面积(单位: 公顷)Tab. 4 The areas of mangroves and Spartina alterniflora in Zhangjiang Estuary (units: hm2) |
类别 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
---|---|---|---|---|---|
红树林 | 59.91 (李屹 等, 2017) | 62.19 (Chen et al, 2017) | 60 (陈远丽 等, 2019); 56.85 (本算法) | 59.88 (本算法) | 58.61 (本算法) |
互花米草 | — | 116.11 (Liu et al, 2017) | 117 (陈远丽 等, 2019); 109.23 (本算法) | 124.00 (本算法) | 142.39 (本算法) |
图5 不同时期研究区西南部的Sentinel-2卫星影像和红树林、互花米草分布图a、b. 2016年1月25日; c、d. 2017年2月11日; e、f. 2018年10月1日。影像波段组合为近红外波段、红波段、绿波段 Fig. 5 The Sentinel-2 satellite image (a) and distribution map of Spartina alterniflora and mangroves (b) on January 25th, 2016. The Sentinel-2 satellite image (c) and distribution map of Spartina alterniflora and mangroves (d) on February 11th, 2017. The Sentinel-2 satellite image (e) and distribution map of Spartina alterniflora and mangroves (f) on October 1st, 2018. All are in the southwest part of the study region. The band combination of the Sentinel-2 A images is near-infrared band, red band and green band |
图6 不同时期研究区北部的Sentinel-2卫星影像和红树林、互花米草分布图a、b. 2016年1月25日; c、d. 2017年2月11日; e、f. 2018年10月1日。影像波段组合为近红外波段、红波段、绿波段 Fig. 6 The Sentinel-2 satellite image (a) and distribution map of Spartina alterniflora and mangroves (b) on January 25th, 2016. The Sentinel-2 satellite image (c) and distribution map of Spartina alterniflora and mangroves (d) on February 11th, 2017. The Sentinel-2 satellite image (e) and distribution map of Spartina alterniflora and mangroves (f) on October 1st, 2018. All are in the north part of the study region. The band combination of the Sentinel-2 A images is near-infrared band, red band and green band |
1 |
陈权, 马克明 , 2015. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 39(3):283-299.
CHEN QUAN, MA KEMING, 2015. Research overview and trend on biological invasion in mangrove forests[J]. Chinese Journal of Plant Ecology, 39(3):283-299 (in Chinese with English abstract).
|
2 |
陈远丽, 路春燕, 刘金福 , 等, 2019. 漳江口湿地变化的遥感监测[J]. 森林与环境学报, 39(1):61-69.
CHEN YUANLI, LU CHUNYAN, LIU JINFU, et al, 2019. Remote sensing monitoring of Zhangjiang Estuary wetland[J]. Journal of Forest and Environment, 39(1):61-69 (in Chinese with English abstract).
|
3 |
和晓风, 林辉, 孙华 , 等, 2015. 基于GF-1卫星东洞庭湖湿地类型信息提取[J]. 中南林业科技大学学报, 35(11):10-15.
HE XIAOFENG, LIN HUI, SUN HUA, et al, 2015. Wetland types information extraction form east Dongting lake based on GF-1 satellite[J]. Journal of Central South University of Forestry & Technology, 35(11):10-15 (in Chinese with English abstract).
|
4 |
黄冠闽, 张宜辉, 方柏州 , 等, 2013. 互花米草对红树植物秋茄幼苗更新的影响[J]. 福建林业科技, 40(4):93-95, 113.
HUANG GUANMIN, ZHANG YIHUI, FANG BAIZHOU, et al, 2013. Effects of Spartina alterniflora on mangrove Kandelia candel seedlings regeneration[J]. Journal of Fujian Forestry Science and Technology, 40(4):93-95, 113 (in Chinese with English abstract).
|
5 |
黄华梅, 张利权 , 2007. 上海九段沙互花米草种群动态遥感研究[J]. 植物生态学报, 31(1):75-82.
HUANG HUAMEI, ZHANG LIQUAN, 2007. Remote Sensing analysis of range expansion of Spartina alterniflora at Jiuduansha shoals in Shanghai, China[J]. Chinese Journal of Plant Ecology, 31(1):75-82 (in Chinese with English abstract).
|
6 |
李春干, 谭必增 , 2003. 基于“3S”的红树林资源调查方法研究[J]. 自然资源学报, 18(2):215-221.
LI CHUNGAN, TAN BIZENG, 2003. Studies on the methods of mangrove inventory based on RS, GPS and GIS[J]. Journal of Natural Resources, 18(2):215-221 (in Chinese with English abstract).
|
7 |
李屹, 陈一宁, 李炎 , 2017. 红树林与互花米草盐沼交界区空间格局变化规律的遥感分析[J]. 海洋通报, 36(3):348-360.
LI YI, CHEN YINING, LI YAN, 2017. Remote sensing analysis of the changes in the ecotone of mangrove forests and Spartina alterniflora saltmarshes[J]. Marine Science Bulletin, 36(3):348-360 (in Chinese with English abstract).
|
8 |
刘春悦, 张树清, 江红星 , 等, 2009. 江苏盐城滨海湿地外来种互花米草的时空动态及景观格局[J]. 应用生态学报, 20(4):901-908.
LIU CHUNYUE, ZHANG SHUQING, JIANG HONGXING, et al, 2009. Spatiotemporal dynamics and landscape pattern of alien species Spartina alterniflora in Yancheng coastal wetlands of Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 20(4):901-908 (in Chinese with English abstract).
|
9 |
潘卫华, 陈家金, 张春桂 , 等, 2011. 福建沿海水域互花米草蔓延的动态监测分析[J]. 中国农业气象, 32(S1):174-177.
PAN WEIHUA, CHEN JIAJIN, ZHANG CHUNGUI, et al, 2011. Dynamic monitoring analysis of expansion of Spartina alterniflora in Fujian[J]. Chinese Journal of Agrometeorology, 32(S1):174-177 (in Chinese with English abstract).
|
10 |
孙飒梅 , 2005. 三都湾互花米草的遥感监测[J]. 台湾海峡 227, 265.
SUN SAMEI, 2005. Monitoring of smooth cordgrass invasion by remote sensing in Sandu Bay, Fujian[J]. Journal of Oceanography in Taiwan Strait, 227, 265 (in Chinese with English abstract).
|
11 |
王友绍 , 2013. 红树林生态系统评价与修复技术[M]. 北京: 科学出版社.
WANG YOUSHAO, 2013. Assessment and remediation techniques of mangrove ecosystems[M]. Beijing: Science Press (in Chinese).
|
12 |
薛星宇, 刘红玉 , 2012. 基于ALOS影像的盐城海滨湿地遥感信息分类方法研究[J]. 遥感技术与应用, 27(2):248-255.
XUE XINGYU, LIU HONGYU, 2012. Study on the classification approaches of Yancheng coastal wetlands based on ALOS image[J]. Remote Sensing Technology and Application, 27(2):248-255 (in Chinese with English abstract).
|
13 |
袁爽, 况润元, 廖启卿 , 2018. 湿地植被遥感提取及动态变化研究——以崇明东滩为例[J]. 江西理工大学学报, 39(1):44-51.
YUAN SHUANG, KUANG RUNYUAN, LIAO QIQING, 2018. Remote sensing extraction and dynamic change of wetland vegetation—A case study of Eastern Chongming Island[J]. Journal of Jiangxi University of Science and Technology, 39(1):44-51 (in Chinese with English abstract).
|
14 |
张宜辉, 黄冠闽, 方清 , 等, 2011. 红树林和互花米草相互作用对环境变化的响应[C]//中国第五届红树林学术会议论文摘要集. 温州: 15 (in Chinese).
|
15 |
周振超, 李贺, 黄翀 , 等, 2018. 红树林遥感动态监测研究进展[J]. 地球信息科学学报, 20(11):1631-1643.
ZHOU ZHENCHAO, LI HE, HUANG CHONG, et al, 2018. Review on dynamic monitoring of mangrove forestry using remote sensing[J]. Journal of Geo-Information Science, 20(11):1631-1643 (in Chinese with English abstract).
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
/
〈 | 〉 |