2000—2015年夏秋季孟加拉湾湾口区涡流相互作用能量学特征
作者简介:乐洲(1994—), 男, 浙江省舟山市人, 硕士研究生, 研究方向是物理海洋学、海气相互作用。E-mail: le_040@163.com
Editor: 殷波
收稿日期: 2019-05-10
要求修回日期: 2019-06-11
网络出版日期: 2020-03-10
基金资助
国家自然科学基金项目(41706027)
国家海洋局海洋环境信息保障技术重点实验室开放课题项目(KLMEITKFXM)
版权
Energy characteristics of eddy-mean flow interaction in the estuary of Bay of Bengal in summer and autumn during 2000-2015
Received date: 2019-05-10
Request revised date: 2019-06-11
Online published: 2020-03-10
Supported by
National Nature Science Foundation of China(41706027)
Opening Project of Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration of China(KLMEITKFXM)
Copyright
文章主要使用全球简单海洋资料同化分析系统(Simple Ocean Data Assimilation, SODA)产出的海洋再分析数据产品和美国国家环境预报中心(National Centers for Environmental Prediction, NCEP)发布的风场资料, 通过能量学方法分析了2000—2015年夏季至秋季(6—11月)孟加拉湾涡-流相互作用特征在不同印度洋偶极子(Indian Ocean Dipole, IOD)事件发生年的表现。结果表明, 在IOD负位相年更强的西南季风背景下, 涡动能和涡势能的量值均较大, 海洋不稳定过程更多地将平均流场的能量输向涡旋场, IOD正位相年反之。另外, 研究发现孟加拉湾湾口区的涡动能在个别年份会发展出一种与气候态存在显著异常的空间分布, 即在个别年份湾口中央海域异常出现涡动能极大值。通过对出现该异常现象最显著的2010年进行个例分析, 发现当年的孟加拉湾海表风场发展出一个气旋式环流异常, 显著地改变了海洋上层环流形态, 极大地影响了平均流场与涡旋场之间的相互作用。进一步对维持涡动能平衡的各做功项进行诊断后发现, 湾口异常海域涡动能年际变化的主要影响因素为海洋内部的压强做功, 其次是正压不稳定过程和平流的做功, 海表风应力做功项贡献较小。
乐洲 , 黄科 , Venkata Subrahmanyam Mantravadi . 2000—2015年夏秋季孟加拉湾湾口区涡流相互作用能量学特征[J]. 热带海洋学报, 2020 , 39(2) : 11 -14 . DOI: 10.11978/2019047
Using the wind field from the Simple Ocean Data Assimilation (SODA) ocean reanalysis product and National Centers for Environmental Prediction (NCEP), we analyze the characteristics of eddy-mean flow interaction in the Bay of Bengal during summer and autumn (June-November) of 2000-2015 by means of energy analysis in different years of occurrence of Indian Ocean Dipole (IOD) anomalies. The results show that, in the context of southwest monsoon with stronger negative phase of the IOD, both eddy kinetic energy (EKE) and eddy potential energy have relatively large magnitude. In the process of ocean internal instability, more energy of the mean flow field has been transferred to the eddy field, while in the positive phase of the IOD the energy is transferred less than usual. In addition, we find that the EKE in the bay mouth area of the Bay of Bengal tends to develop a spatial distribution with significant anomalies of the climate state in negative IOD anomaly years, that is, the EKE maxima appears around (88°E, 5°N). A case study of 2010 when the EKE anomaly was most prominent reveals that a cyclonic circulation anomaly was developed in the surface of the Bay of Bengal, which significantly changed the upper-ocean circulation pattern and greatly affected the interaction between the mean flow field and the eddy field. After further diagnosis of each term that maintains the EKE balance, we find that the main influencing factor of interannual change of EKE in the bay mouth area was the pressure term inside the ocean, followed by the unstable barotropic process and the advection term; and the contribution of sea surface wind stress was minimal.
图1 2000至2015年孟加拉湾夏秋季涡动能(EKE)的气候态空间分布及其时间序列图a、b、c为EKE的气候态空间分布, 分别由SODA、OSCAR、AVISO数据制作得到; 图d为以上3种数据在孟加拉湾区域(3°—22°N, 80°—100°E)平均的EKE时间序列; 图e为图d中的时间序列做年际尺度(2~8a)的滤波得到的结果 Fig. 1 Summer and autumn averaged spatial distribution of EKE in the Bay of Bengal and its time series from 2000 to 2015, based on SODA (a), OSCAR (b) and AVISO (c) data, respectively. EKE time series averaged in the Bay of Bengal (80°-100°E, 3°-22°N) of those data (d), Filtered result of the time series in (d) on the interannual time scale (2~8 years) (e) |
图3 2000—2015年(依次对应a~p)夏秋季平均EKE的空间分布图k中的红色方框表示部分年份的涡动能在海域(5°—7°30′N, 87°30′—90°E)表现出较明显的异常, 将该海域记为CR区 Fig. 3 Spatial distribution of summer and autumn averaged EKE from 2000 to 2015. (a) to (p) corresponding to years 2000 to 2015. The red box in (k) indicates that area (5°-7°30′N, 87°30′-90°E) have large EKE anomaly in some years, marked as area CR |
图4 2000至2015夏秋季DMI指数(棒状图)和CR海域(5°—7°30′N, 87°30′—90°E)平均的EKE异常值的时间序列(折线图)图中虚线表示0.5倍标准差, 以此为阈值来划分IOD正(负)位相年 Fig. 4 DMI Index (bar, corresponding to the left ordinate) and summer and autumn averaged EKE anomaly (black line, corresponding to the right ordinate) in CR area (5°-7°30′N, 87°30′-90°E ) from 2000 to 2015 |
图5 IOD正位相年(a~d)、正常年(e~h)、负位相年(i~l)合成的夏秋季EKE、EPE、T2、T4均值EKE (a、e、i)和EPE (b、f、j)为涡旋场能量; T2 (c、g、k)和T4 (d、h、l)为海洋不稳定过程 Fig. 5 Spatial distribution of summer and autumn averaged eddy field energy (EKE and EPE) and ocean instability (T2, T4). (a~d) are composed by positive IOD years, (e~h) are composed by neutral years, and (i~l) are composed by negative IOD years |
图6 孟加拉湾海表风场(1000hPa等压面)及海表面高度异常(填色)的气候态均值(a)和IOD正、负位相年合成值(b、c)Fig. 6 Surface wind field and sea surface height anomaly in Bay of Bengal of Climatic mean state (a) and composed by positive IOD years (b), negative IOD years (c). Colourful maps are sea surface height anomaly, vectors correspond to wind speed on 1000 hPa isobaric surface in figure (a) and wind speed anomaly in figure (b) and (c), the arrow in the upper right corner corresponds to wind speed of 3 m·s-1 |
图7 IOD负位相年夏季(a)及秋季(b) EKE均值与气候态均值存在显著异常的空间点分布星号( * )表示该点通过95%置信度的t检验 Fig. 7 Spatial distribution of grids with significant anomalies between climatic mean EKE and summer-averaged EKE (a) and between climatic mean EKE and autumn-averaged EKE (b) composed by negative IOD years. * indicates that it passes the 95% confidence level of t-test |
图8 2010年孟加拉湾1000hPa等压面上的海表风场异常及海表面高度异常(a)和湾口6°N断面上的流速异常值(b、c)图b和c分别为6°N垂向断面上的纬向流速u (以东为正)和经向流速v (以北为正)异常在2010年夏秋季的均值 Fig. 8 Map of 2010 wind anomaly (vector) on 1000 hPa over the Bay of Bengal and sea surface height anomaly (shading) (a). The arrow at the upper-right corner corresponds to wind speed of 3 m·s-1. (b) and (c) correspond to summer and autumn averaged zonal and meridional velocity anomalies along 6°N in 2010 |
图9 2010年夏秋季平均的沿6°N断面的涡旋场能量异常(a、d)、海洋不稳定过程异常(b、e)和浮力频率及异常(c、f)a. EKE的2010年异常值; b. T4 的2010年异常值; c. 浮力频率N2的气候态均值; d. EPE的2010年异常值; e. T2的2010年异常值; f. 浮力频率N2的2010年异常值 Fig. 9 Summer and autumn averaged EKE (a), T4 (b), EPE (d), and T2 (e) anomalies along 6°N of the Bay Estuary in 2010. (c) Climatic mean of buoyancy frequency N2, (f) buoyancy frequency N2 anomaly in 2010 |
图10 2009至2011年CR海域EKE平衡方程各项的逐月时间序列(a)、2000至2015年CR海域EKE平衡方程做功项总和与EKE变化项的逐月时间序列对比(b)以及从2000至2015年CR海域EKE平衡方程各做功项单独与EKE变化项的逐月时间序列对比(c~f)dEKE/dt表示EKE变化趋势; WW表示海表风应力做功项; PW表示压强做功项; T4表示正压不稳定做功项; ADV表示平流项; sum表示以上几个做功项之和 Fig. 10 Monthly time series of all terms in EKE equation in CR area from 2009 to 2011 (a), and monthly time series comparison between the sum of all EKE equation terms and EKE change in CR area from 2000 to 2015 (b). Monthly time series comparison between every single EKE equation term and EKE change in CR area from 2000 to 2015 (c~f) |
1 |
李晗, 王强, 黄科 , 等, 2017. 1992—2011年夏季南海西部离岸流区涡流相互作用特征[J]. 海洋与湖沼, 48(5):912-925.
LI HAN, WANG QIANG, HUANG KE, et al, 2017. Characteristics of eddy-mean flow interaction in the offshore current area of western South China Sea[J]. Oceanologia et Limnologia Sinica, 48(5):912-925 (in Chinese with English abstract).
|
2 |
邱云, 李立 , 2007. 孟加拉湾上层地转环流周年变化的遥感研究[J]. 海洋学报, 29(3):39-46 .
QIU YUN, LI LI, 2007. Annual variation of geostrophic circulation in the Bay of Bengal observed with TOPEX/Poseidon altimeter data[J]. Acta Oceanologica Sinica, 29(3):39-46 (in Chinese with English abstract).
|
3 |
王天宇, 杜岩, 庄伟 , 等, 2015. 热带西太平洋和南印度洋近20年来的海面高度变化及其动力联系[J]. 中国科学: 地球科学, 45(5):665-675.
WANG T Y, DU Y, ZHUANG W, et al, 2015. Connection of sea level variability between the tropical western Pacific and the southern Indian Ocean during recent two decades[J]. Science China: Earth Sciences, 45(5):665-675(in Chinese with English abstract).
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
/
〈 | 〉 |