台风“康森”产生的海洋近惯性能量的数值模拟研究
作者简介:李娟(1988—), 女, 福建省南平市人, 博士研究生, 从事近惯性内波研究。E-mail: lijuan.08@163.com
Editor: 殷波
收稿日期: 2019-08-16
要求修回日期: 2019-09-25
网络出版日期: 2020-03-10
基金资助
中国科学院前沿科学重点研究计划(QYZDJ-SSW-DQC034)
国家自然科学基金项目(41890851、41430964、41521005、41776005、41406023、41476011)
中国科学院南海生态环境工程创新研究院项目(ISEE2018PY05)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0304)
版权
Numerical simulation of oceanic near-inertial energy induced by Typhoon Conson
Received date: 2019-08-16
Request revised date: 2019-09-25
Online published: 2020-03-10
Supported by
Key Research Program of Frontier Sciences, Chinese Academy of Sciences(QYZDJ-SSW-DQC034)
National Natural Science Foundation of China(41890851、41430964、41521005、41776005、41406023、41476011)
Program of Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2018PY05)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0304)
Copyright
文章利用经验台风风场模型(TCWPM)和美国环境预测中心的气候预测系统再分析风场资料(NCEP/CFSR)对台风“康森(Conson)”进行数值模拟, 并将模拟的台风带入平板模式(slab model)模拟台风产生的海洋近惯性流。对比实测数据表明, 模拟结果与真实风场、近惯性流场均比较一致, 台风“康森”在近海面的风场不对称结构非常明显, 台风中心两侧的速度大小相差可达10m·s-1。台风“康森”在台风中心后方产生强烈的海洋近惯性振荡, 且持续时间超过4d。海洋近惯性动能沿着台风路径呈显著的不对称分布, 表明台风“康森”在共振作用下主要在路径右侧激发强烈的近惯性振荡。研究不同强度的热带气旋产生的海洋近惯性能量, 发现热带风暴产生的海洋近惯性能量较小, 平均近惯性动能不超过35J·m-3。随着气旋强度的增大, 热带气旋激发的近惯性能量呈指数增长, 而台风的影响面积与最大风速半径的变化相对比较一致, 当最大风速半径(R0)增大一半(1.5R0)时, 其产生的最大平均近惯性动能从81J·m-3增大到631J·m-3, 影响面积从大约600km2增加到大于900km2。
李娟 , 刘军亮 , 蔡树群 . 台风“康森”产生的海洋近惯性能量的数值模拟研究[J]. 热带海洋学报, 2020 , 39(2) : 35 -43 . DOI: 10.11978/2019073
A Tropical Cyclone Wind Profile Model (TCWPM) and the NCEP/CFSR wind data are used to simulate Typhoon Conson, and a slab model is developed to simulate typhoon-induced oceanic near-inertial currents. The model results match well with both reanalysis data and in situ observations. Typhoon Conson presented a salient asymmetric wind field at the ocean surface, and the bias between the two sides of the wind field along the track reached up to 10 m·s-1. Typhoon Conson generated strong oceanic near-inertial oscillations (NIOs) after the typhoon center, which lasted for more than four days, and a significant asymmetric distribution of near-inertial kinetic energy (NIKE) indicates the strong NIOs are mainly triggered on the right-hand side of Typhoon Conson under the resonance effect. We also show that the tropical storm yields a small fraction of NIKE, e.g., the mean NIKE does not exceed 35 J·m-3, but the NIKE increases exponentially with the increasing radius of maximum wind speed (Rmax or R0), and the influence area increases linearly with Rmax, e.g., when Rmax increases from R0 to 1.5 R0, the NIKE rises from 81 to 631 J·m -3, and the influence area increases from 600 to more than 900 km2.
图1 南海水深分布和台风“康森”移动路径(红色圈横线)红色圆圈大小代表台风风速大小, 黄色圆点代表下文风场验证所选的8个点(A~H), 黑色五角星为ADCP浮标的位置, 白色数字表示台风经过时间 Fig. 1 Bathymetry (units: m) of the South China Sea (SCS) and the track of Typhoon Conson (the red line with circles). The size of red circle indicates the magnitude of wind speed, and the eight yellow dots denote the locations for validation. The black pentagram indicates the position of ACDP mooring station. The time denotes the date using the format of month/day |
图3 沿台风路径的拟合风速与附近的再分析资料CFSR风速的对比Fig. 3 Comparison of simulated wind speed of TCWPM with the wind speed from CFSR data along typhoon track |
图4 拟合风速与观测站点风速对比(a)、观测站点所在的混合层深度(b)以及TCWPM模型拟合风场模拟的近惯性流、观测风场模拟的近惯性流和观测流场滤波得到的近惯性流的东西分量(c)和南北风量(d)的对比Fig. 4 Comparison of simulated wind speed with the observational wind speed at the meteorological observation station of Xisha Islands (a), the corresponding mixed layer depth at the mooring station (b), comparison of eastward component (c) and northward component of slab-model simulated near-inertial currents from TCWPM, slab-model simulated near-inertial currents using observational wind and the observational near-inertial current (d), respectively |
图5 台风输入的近惯性动能(NIKE)随时间的变化分布(水深小于10m的区域均不纳入计算)黑色圆圈为台风中心的位置, 加粗黑线表示台风路径, 黑色数字表示时间(月/日 小时:分钟) Fig. 5 Variation of typhoon-induced near-inertial kinetic energy (NIKE) (regions shallower than 10 m are excluded in the calculation). Black circle denotes the typhoon center, and black line indicates the typhoon trajectory |
表1 不同台风强度对于近惯性能量影响的试验设计Tab. 1 Experiments of typhoon-induced NIKE under different intensities of typhoon |
试验 | 最大风速半径/km | 最大风速/(m·s-1) | 热带气旋等级 | 最大平均近惯性动能/(J·m-3) |
---|---|---|---|---|
Case 1 | 0.50R0 | 30.3 | 强热带风暴 | 29.5 |
Case 2 | 0.75R0 | 30.3 | 强热带风暴 | 34.8 |
Case 3 | R0 | 35.8 | 台风 | 80.8 |
Case 4 | 1.25R0 | 42.6 | 强台风 | 212.0 |
Case 5 | 1.50R0 | 49.0 | 强台风 | 644.2 |
注: R0为最大风速半径 |
1 |
张骞, 廖光洪, 蔺飞龙 , 等, 2019. 南海西北部上层海洋对台风 “杜苏芮”的响应分析[J]. 海洋学报, 41(7):22-35 .
ZHANG QIAN, LIAO GUANGHONG, LIN FEILONG, et al, 2019. Analysis of upper ocean response to Typhoon Doksuri in the northwest South China Sea[J]. Haiyang Xuebao, 41(7):22-35 (in Chinese with English abstract).
|
2 |
中国气象局, 2013. 热带气旋年鉴-2011[M]. 北京: 气象出版社.
CHINA METEOROLOGICAL ADMINISTRATION, 2013. Yearbook of Tropical Cyclone -2011[M]. Beijing: China Meteorological Press (in Chinese).
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
/
〈 | 〉 |