收稿日期: 2008-11-15
修回日期: 2010-03-11
网络出版日期: 2010-05-24
基金资助
国家自然科学基金项目(40805046/D0508); 国家重点基础研究发展规划项目(973)课题(2009B421502); 行业专项GYHY(QX2007-6-15)
Sea spray parameterization used in typhoon simulations
Received date: 2008-11-15
Revised date: 2010-03-11
Online published: 2010-05-24
Supported by
国家自然科学基金项目(40805046/D0508); 国家重点基础研究发展规划项目(973)课题(2009B421502); 行业专项GYHY(QX2007-6-15)
海洋飞沫作为海气相互作用的重要因子, 在台风的发生、发展过程中扮演着重要角色。将Fairall和Andreas海洋飞沫参数化方案加入到WRF模式中对两个台风——“珊珊”、“桑美”进行了模拟, 以研究不同海洋飞沫参数化在WRF模式中对台风模拟效果的影响。结果表明, 加入Fairall方案后潜热通量、感热通量得到很大程度的加强, 使得台风的热力结构得以改变, 暖心结构十分明显, 从而影响了动力场结构。相对涡差解释了台风移动路径变化的原因, 热成散度、涡度以及水汽通量的改变影响了台风的强度。Andreas方案由于界面通量算法在考虑海表面动量粗糙度、热力粗糙度及水汽粗糙度随风速、相对湿度变化的情况下, 得到的潜热通量、感热通量较Fairall方案为弱, 因而台风的强度不强。飞沫参数化方案对模拟台风路径的影响较小。
刘磊,郑静,陆志武,章亦涛 . 海洋飞沫参数化方案在台风数值模拟中的应用[J]. 热带海洋学报, 2010 , 29(3) : 17 -27 . DOI: 10.11978/j.issn.1009-5470.2010.03.017
Sea spray, an important factor in the air-sea interaction, plays an essential role in the occurrence and evolution of typhoon. In order to examine the impact of different sea spray parameterizations on typhoon simulations, the Fairall and Andreas schemes were included in the WRF atmosphere model to simulate two typhoons. The results show that the latent and sensible heat fluxes increased greatly in the Fairall scheme. Since the heat construction of the typhoons changed and the warm core was obvious, the dynamic construction changed as well. Relative diff-vortex explains the cause of the change in typhoon's track and the diff-divergence, vortex and the vapor flux affect the intensity of typhoon. The Andreas scheme, which considers the change of roughness in momentum, heat, and moisture with wind speed and relative humidity, has lower latent and sensible heat fluxes than the Fairall scheme, so the intensity of the typhoons is strong. The simulation of track is less impacted by different sea spray parameterizations.
Key words: WRF model; sea spray parameterization; typhoon; numerical simulation
[1] MESTAYER P G, LEFAUCONNIER C. Spray droplet generation, transport, and evaporation in a wind wave tunnel during the Humidity Exchange over the Sea Experiments in the Simulation Tunnel[J]. J Geophys Res, 1988, 93: 572-586.
[2] ROUAULT M P, MESTAYER P G, SCHIESTEL R. A model of evaporating spray droplet dispersion[J]. J Geophys Res, 1991, 96: 7181-7200.
[3] VAN E A, TRANCHANT B. SeaCluse: Numerical simulation of evaporating sea spray droplets[J]. J Geophys Res, 2001, 106(C2): 2573-2588.
[4] EDSON J B, ANQUENTIN S, MESTAYER P G. Spray droplet modeling:2.An interactive Eulerian-Lagrangian model of evaporating spray droplets[J]. J Geophys Res, 1996, 101: 1279-1293.
[5] KOROLEV V S, PETRICHENKO S A, PUOV V D. Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip[J]. Sov Meteor Hydrol, 1990, 3: 92-94.
[6] ANTHES R A. Tropical cyclones: their evolution, structure and effects[J]. Meteor Monogr, 1982, 41: 208.
[7] BETTS A K, MILLER M J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX,ATEX and arctic air-mass data
[J]. Quart J Roy Meteor Soc, 1986, 112: 693-709.
[8] CIONE J J, BLACK P G, HOUSTON S H. Surface observations in the hurricane environment[J]. Mon Wea Rev, 2000, 128: 1550-1561.
[9] YUQING WANG, JEFF D. KEPERT, GREG J. Holland. The Effect of Sea Spray Evaporation on Tropical Cyclone Boundary Layer Structure and intensity[J]. American Meteorological Society., 2001, 129: 2481-2499.
[10] 马艳, 华锋, 陈丽娟, 等. 海面温度变化影响台风“海棠”强度的数值模拟[J]. 海洋科学进展, 2007, 25: 453-459.
[11] 吴迪生, 周水华, 张娟, 等. 东海台风状况下海-气界面热量交换[J]. 气象研究与应用, 2007, 28: 45-47.
[12] 黎伟标, 何溪澄, 唐洁. 台风“森拉克”的数值模拟研究: 海洋飞沫的作用[J]. 热带海洋学报. 2004, 23(3): 58-65.
[13] 黄立文, 吴国雄, 宇如聪. 中尺度海-气相互作用对台风暴雨过程的影响[J]. 气象学报, 2005, 63(4): 455-467.
[14] ANDREAS E L. Approximation formulas for the microphysical properties of saline droplets[J]. Atmospheric Research, 2005, 75(4): 323-345.
[15] ANDREAS E L, WANG S. Predicting significant wave height off the northeast coast of the United States[J]. Ocean Engineering, 2007, 34(8-9): 1328-1335.
[16] ANDREAS E L, WANG S. Predicting significant wave height off the northeast coast of the United States[C]//14th Conference on Interaction of the Sea and Atmosphere. 2006.
[17] PERSSON P O, HARE J E, FAIRALL C W, et al. Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(607): 877-912.
[18] FAIRALL C W, BRADLEY E F, ROGERS D P, et al. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment[J]. J Geophys Res, 1996, 101(C2): 3747-3764.
[19] ANDREAS E L. Spray stress revisited[J]. J Phys Oceanogr, 2004, 34: 1429-1440.
[20] FAIRALL C W, KEPERT J D, HOLLAND G J. The effect of sea spray on surface energy transports over the ocean[J]. Global Atmos Ocean Syst, 1994, 2: 121-142.
[21] 黄小刚, 费建芳, 陆汉城. 消去分析台风方法的对比研究[J]. 应用气象学报,2006, 17(1): 81-86.
[22] 薛根元, 张建海, 陈红梅, 等. 超强台风Saomai(0608)加强成因分析及海温影响的数值试验研究[J]. 第四纪研究, 2007, 27(3): 311-320.
[23] 张建海, 张立波, 庞盛荣. 台风“卡努”(0515)加强过程对边界层参数化方案的敏感性试验[J]. 台湾海峡,2007, 26: 26-35.
[24] ZHENG JING, FEI JIAN-FANG, et. al, Effect of sea spray on numerical simulation of super typhoon “Ewiniar”[J]. Journal of Ocean University of China, accepted, will be published on Vol 7, 2008. The Fourth International Ocean-Atmosphere Conference 2007, July, 2007, Qingdao.
/
〈 | 〉 |