琼东南盆地陆架区晚中新世以来断层活动性研究
胡守祥(1993—), 男, 河南省南阳市人, 博士研究生, 主要从事海洋新构造与深海沉积研究。email: |
Copy editor: 殷波
收稿日期: 2020-02-23
要求修回日期: 2020-04-10
网络出版日期: 2020-04-16
基金资助
国家科技基础资源调查专项(2017FY201406)
国家自然科学基金(41876067)
中国科学院边缘海与大洋地质重点实验室资助项目(OMG18-11)
版权
Study on fault activities since the Late Miocene in the continental shelf of Qiongdongnan Basin
Copy editor: YIN Bo
Received date: 2020-02-23
Request revised date: 2020-04-10
Online published: 2020-04-16
Supported by
Special Foundation for National Science and Technology Basic Research Program of China(2017FY201406)
National Natural Science Foundation of China(41876067)
Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences(OMG18-11)
Copyright
对琼东南盆地陆架区晚中新世以来的断层活动性进行研究, 有助于理解南海西北部晚中新世以来的构造演化, 也对该区钻井平台的安全性评估、海洋工程勘查以及区域稳定性评价等有重要意义。研究区断层走向主要为NWW向, 多数断层在晚中新世时期停止活动。通过对断层几何形态的统计分析以及使用高分辨率断层落差图法(T-Z图示法)对断层活动性进行量化分析, 结果显示: 断层活动性在晚中新世末期(5.5Ma)发生转变; 研究区南部的断层落差值大于北部; 南部断层停止活动的时间较北部断层稍晚。这些研究成果表明, 晚中新世末期研究区断层受构造应力变化的影响, 在生长发育过程中断层活动性质发生了改变, 由逆断层转为正断层。红河断裂带对琼东南盆地的构造演化起着重要的控制作用, 文章推测研究区断层活动性变化是由红河断裂带的构造反转所导致, 因为红河断裂带在5.5Ma时发生了走滑运动的反转, 与研究区的断层活动性变化在时间和性质上相耦合。
关键词: 琼东南盆地; 晚中新世以来; 断层活动性; 高分辨率断层落差图法; 红河断裂带
胡守祥 , 姚衍桃 , 李健 , 李爽 , 汪灵 , 詹文欢 , 李伟 , 冯英辞 . 琼东南盆地陆架区晚中新世以来断层活动性研究[J]. 热带海洋学报, 2021 , 40(2) : 90 -102 . DOI: 10.11978/2020019
The study of fault activities since the late Miocene in the shelf area of the Qiongdongnan Basin helps us understand its tectonic evolution. Such study plays an important role for the safety evaluation of drilling platform, oceaneering and regional stability evaluation. In this paper, the fault characteristics in the Qiongdongnan Basin are analyzed with statistics and the throw-depth (T-Z plots) to quantitatively analyze the fault activities in the region, and to discuss the causes of fault activity change. The faults in the study area were growth faults, the strike was mainly concentrated in the NWW, and most faults ceased in the Late Miocene period. Our quantitative results show that the fault activities changed in the Late Miocene period (5.5 Ma). The value of fault throw in the south part of the study area was much larger than that in the north. Based on the above results, we propose that the faults have been affected by tectonic stress in the process of growth, and the fault activities changed at the end of the late Miocene, from inverse fault to positive fault. The Red River Fault Zone played an important role in the tectonic evolution of the Qiongdongnan Basin, and the controlling factor of this change may be due to the tectonic reversal of the Red River Fault Zone. The reversal of the strike-slip motion of the Red River Fault Zone in 5.5 Ma was coupled with the change of the fault activities and the reverse of the faults in the study area.
Key words: Qiongdongnan Basin; Late Miocene; fault activity; T-Z plots; Red River Fault Zone
表1 断层T-Z图量化参数总结Tab. 1 Summary of T-Z diagram parameters of faults in the study area |
地层 | 参数 | 断层A | 断层C | 断层B | 平均 |
---|---|---|---|---|---|
T20—海底 | 变异系数 | 0.53 | 0.74 | 0.68 | 0.65 |
断层落差/ms | 28.39 | 14.26 | 6.61 | 16.42 | |
T-Z图折线斜率 | 0.05 | 0.09 | / | 0.05 | |
T30—T20 | 变异系数 | 0.11 | 0.31 | 0.30 | 0.24 |
断层落差/ms | 63.10 | 29.85 | 17.82 | 36.92 | |
T-Z图折线斜率 | 0.06 | 0.05 | 0.05 | 0.05 | |
T40—T30 | 变异系数 | 0.15 | 0.08 | 0.14 | 0.13 |
断层落差/ms | 73.43 | 58.33 | 28.76 | 53.51 | |
T-Z图折线斜率 | -0.04 | 0.03 | 0.001 | -0.003 |
注: / 表示该断层B在该地层范围内仅两个数据, 易引起误差, 不计算该位置参数 |
图9 红河断裂带的滑移反转与断层T-Z图的对比[底图由GMT制作, 图中构造单元修改自Sun 等(2003); Zhu等(2009)]a. 16—5.5Ma时南海西北部区域构造图; b. 5.5Ma至今南海西北部区域构造图; c. 断层A 1号剖面的T-Z图; d. 断层A 1号地震剖面。图a和图b中黑色实线表示红河断裂带; 红色箭头表示红河断裂带滑移方向。YGHB: 莺歌海盆地; QDNB: 琼东南盆地; PRMB: 珠江口盆地; RRFZ: 红河断裂带 Fig. 9 Structure reversal of the Red River Fault Zone, and T-Z diagrams of the faults |
图10 晚中新世琼东南盆地海底滑坡反转机制分析[底图由GMT制作, 图中构造单元据何丽娟等(2000); Miller等(2005); Zhu等(2009); Wang等(2013); Wang等(2016)修改]a. 琼东南盆地海底滑坡与红河断裂带的空间分布图; b. 南海海平面变化曲线图; c. 琼东南盆地沉积速率变化曲线; d. 琼东南盆地热流变化曲线。图a中黑色虚线表示琼东南盆地区域图; 黑色实线表示红河断裂带分布图; 灰白色区域表示滑坡发生区 Fig. 10 Analysis of the inversion mechanism of landslide in the south southeast of Qiongdongnan Basin in the late Miocene (He et al, 2000; Miller et al, 2005; Zhu et al, 2009; Wang et al, 2013; Wang et al, 2016) |
[1] |
蔡佳, 2009. 琼东南盆地古近系古地貌恢复及其对层序样式和沉积特征的控制[D]. 武汉: 中国地质大学: 1-216.
|
[2] |
何丽娟, 熊亮萍, 汪集旸, 等, 2000. 莺歌海盆地构造热演化模拟研究[J]. 中国科学(D辑: 地球科学), 30(4):415-419.
|
[3] |
何云龙, 2012. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 武汉: 中国地质大学: 1-148.
|
[4] |
李居云, 2015. 琼东南盆地北部坳陷带构造演化及其对煤系烃源岩的控制[D]. 徐州: 中国矿业大学: 1-98.
|
[5] |
李绪宣, 朱光辉, 2005. 琼东南盆地断裂系统及其油气输导特征[J]. 中国海上油气, 17(1):1-7.
|
[6] |
梁富康, 于兴河, 李先平, 等, 2011. 冀中坳陷深县凹陷的生长断层特点及其对沉积的控制作用[J]. 中国地质, 38(2):263-270.
|
[7] |
任金锋, 2016. 琼东南盆地陆架边缘斜坡地形的定量演化过程[D]. 武汉: 中国地质大学: 1-184.
|
[8] |
孙珍, 钟志洪, 周蒂, 等, 2003. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J]. 热带海洋学报, 22(2):1-9.
|
[9] |
谢文彦, 张一伟, 孙珍, 等, 2007. 琼东南盆地断裂构造与成因机制[J]. 海洋地质与第四纪地质, 27(1):71-78.
|
[10] |
谢玉洪, 童传新, 范彩伟, 等, 2015. 琼东南盆地断裂系统特征与演化[J]. 大地构造与成矿学, 39(5):795-807.
|
[11] |
徐果明, 姚华建, 朱良保, 等, 2007. 中国西部及其邻域地壳上地幔横波速度结构[J]. 地球物理学报, 50(1):193-208.
|
[12] |
徐子英, 孙珍, 2015. 琼东南盆地西南部反转构造发育机制物理模拟[J]. 海洋地质前沿, 31(8):47-52.
|
[13] |
袁玉松, 杨树春, 胡圣标, 等, 2008. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 51(2):376-383.
|
[14] |
张功成, 王璞珺, 吴景富, 等, 2015. 边缘海构造旋回: 南海演化的新模式[J]. 地学前缘, 22(3):27-37.
|
[15] |
张焱林, 刘晓峰, 郭忻, 2010. 高分辨率断层落差图的基本原理及其应用[J]. 断块油气田, 17(2):181-184.
|
[16] |
赵孟为, 1989. 断层生长指数探讨[J]. 石油实验地质, 11(3):250-254.
|
[17] |
郑勇, 傅容珊, 熊熊, 2006. 中国大陆及周边地区现代岩石圈演化动力学模拟[J]. 地球物理学报, 49(2):415-427.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
/
〈 | 〉 |