收稿日期: 2008-03-27
修回日期: 2008-07-21
网络出版日期: 2010-05-24
基金资助
国家高技术研究发展计划(“863”)项目(2006AA10A409), 国家科技支撑计划项目(2006BAD01A13)和广东省科技计划项目
Isolation and screening of microsatellite markers from the Chinese pearl oyster Pinctada fucata based on FIASCO
Received date: 2008-03-27
Revised date: 2008-07-21
Online published: 2010-05-24
Supported by
国家高技术研究发展计划(“863”)项目(2006AA10A409), 国家科技支撑计划项目(2006BAD01A13)和广东省科技计划项目
用FIASCO(Fast Isolation by AFLP of Sequences Containing Repeats)技术开展了合浦珠母贝Pinctada fucata基因组微卫星标记的分离与筛选研究。合浦珠母贝基因组DNA经限制性内切酶MseI酶切后与接头连接, 用生物素标记的(CA)15探针与其杂交, 然后用磁珠富集、洗脱获得单链目的片段, 经PCR扩增后形成双链, 最后进行克隆转化, 构建微卫星富集文库。挑选克隆用探针引物(CA)15 和载体引物进行第2次筛选, 获得阳性克隆357个, 测序结果表明, 297个克隆(83.2%)含有微卫星序列, 包括479个微卫星DNA结构域。其中完美型微卫星有370个(77.3%), 非完美型95个(19.8%), 复合型14个(2.9%)。合成引物49对, 有31对(63%)扩增出目的产物, 其中9 对在种群中(n=32)具有扩增多态性, 其多态信息含量PIC值在0.375―0.809之间, 平均为0.536; 等位基因数 在2―9个之间, 平均为4.889个; 观测杂合度介于0.200―0.600之间, 平均为0.415; 期望杂合度的变化范围为0.454―0.844, 平均为0.598。表明FIASCO技术适合于合浦珠母贝微卫星标记的分离与筛选。
关键词: FIASCO法; 合浦珠母贝Pinctada fucata; 微卫星标记; 分离与筛选
曲妮妮,龚世园,黄桂菊,童金苟,喻达辉 . 基于FIASCO技术的合浦珠母贝微卫星标记分离与筛选研究[J]. 热带海洋学报, 2010 , 29(3) : 47 -54 . DOI: 10.11978/j.issn.1009-5470.2010.03.047
Isolation and screening of microsatellite markers from Pinctada fucata were performed using the method of Fast Isolation by AFLP of Sequences Containing Repeats (FIASCO). After restriction of genomic DNA with MseI, the digested fragments were ligated with adaptors and then hybridized with biotinylated (CA)15 probes. The tentative microsatellite DNA was isolated by streptavidin-coated magnetic beads from the hybridized mixture. After purification, the isolated microsatellite DNA was amplified using degenerated primer MseⅠ-N and then cloned into T-vector. After transforming, the microsatellite-enriched library was constructed. The second PCR screening was performed using the primer of (CA)15 probe and T vector’s primers, and 357 positive clones were obtained. Sequencing analysis showed that 297 clones (83.2%) contained microsatellite DNA, including 479 microsatellite domain. Among them, 370 microsatellites (77.3%) were perfect type, 95 (19.8%) imperfect type and 14 (2.9%) compound type. Forty nine pairs of primers were designed and 31 (63%) pairs were effective for PCR amplification. Nine loci showed polymorphism as tested by a population (n=32). PIC values for the nine loci ranged from 0.375 to 0.809 with an average of 0.536. The number of alleles ranged from 2 to 9 with an average of 4.889. The observed heterozygosity ranged from 0.200 to 0.600 with an average of 0.415, and the expected heterozygosity ranged from 0.454 to 0.844 with an average of 0.598. This study demonstrated that FIASCO is a useful technique of microsatellite isolation for Pinctada fucata.
[1] LITT M, LUTY J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene
[J]. American Journal of Human Genetics, 1989, 44(3): 397-401.
[2] TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Research, 1989, 17(16): 6463-6471.
[3] WEBER J L, MAY P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction[J]. American Journal of Human Genetics, 1989, 44(3): 388-396.
[4] RASSMANN K, SCHLOTTERER C, Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction-based DNA fingerprinting[J]. Electrophoresis, 1991, 12(2/3): 113-118.
[5] OSTRANDER E A, JONG P M, RINE J, et al. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequence
[J]. Proceedings of the National Academy of Sciences of the USA, 1992, 89(8): 3419-3423.
[6] KARAGYZOV L, KALCHIEVA I D, CHAPMAN V M. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats
[J]. Nucleic Acids Research, 1993, 21(16): 3911-3912.
[7] KIJAS J M, FOWLER J C, GARBETT C A, et al. Enrichment of microsatellite from the citrus genome using biotinylated oligonucleotide sequence bound to streptavidin-coated magnetic particles[J]. Biotechniques, 1994, 16(4): 656-662.
[8] ZANE L, BARGELLON L, PATARNELLO T. Strategies for microsatellite isolation: a review[J]. Molecular Ecology, 2002, 11(1): 1-16.
[9] LUNT D H, HUTCHINSON W F, CARVALHO G R, et al. An efficient method for PCR-based identification of microsatellite arrays (PIMA)[J]. Molecular Ecology, 1999, 8(5): 893-894.
[10] 匡刚桥, 刘臻, 鲁双庆, 等. FIASCO法筛选鳜鱼微卫星标记[J]. 中国水产科学, 2007, 14(4): 608-614.
[11] LIAO X L, ZHU B, YU X M, et al. Isolation and characterization of polymorphic microsatellites in a Yangtze River fish, brass gudgeon (Coreius heterodon Bleeker)[J]. Molecular Ecology Notes, 2006, 6(2): 393-395.
[12] 王小玉, 喻达辉, 郭奕惠, 等. 七种珍珠贝RAPD鉴别标记的初步研究[J]. 南方水产, 2006, 2(1): 18-22.
[13] 喻达辉, 王小玉, 黄桂菊, 等. 合浦珠母贝遗传连锁图谱的构建[J]. 中国水产科学, 2007, 14(3): 361-368.
[14] HOLLAND B S. Invasion without a bottleneck: Microsattellite variation in natural and invasive populations of the brown mussel Perna perna (L)[J]. Marine Biotechnology, 2001, 3(5): 407-415.
[15] LI Q, PARK C, KIJIMA A. Loss of genetic variation at microsatelle loci in hatchery strains of the Pacific abalone (Haliotis discus hannai)[J]. Aquaculture, 2004, 235(1?4): 207-222.
[16] 赵莹莹, 朱晓琛, 孙效文, 等. 磁珠富集法筛选虾夷扇贝微卫星序列[J]. 中国水产科学, 2006, 13(5): 749-755.
[17] 李红蕾, 宋林生, 王玲玲, 等. 栉孔扇贝EST中微卫星标记的筛选[J]. 高技术通讯, 2003, 13(12): 72-75.
[18] 李琪, 木岛明博. 长牡蛎微卫星克隆快速分离及特征分析[J]. 海洋与湖沼, 2004, 35(5): 364-370.
[19] LIN G, FENG F, YUE G H. Isolation and characterization of polymorphic microsatellites from Asian green mussel (Perna viridis)[J]. Molecular Ecology Notes, 2007, 7(6): 1036-1038.
[20] EVENS B S, KNAUER J, TAYLOR J U, et al. Development and characterization of six new microsatellite markers for the silver-or gold-lipped pear oyster, Pinctada maxima(Pteriidae) [J]. Molecular Ecology Notes. 2006, 6(3): 835-837.
[21] HERBINGER C M, SMITH C A, LANGY S. Development and characterization of novel tetra-and dinucleotide microsatellite markers for the French Polynesia black-lipped pearl oyster, Pinctada margaritifera[J]. Molecular Ecology Notes 2006, 6(1): 107-109.
[22] LI G, HUBERT S, BUCKLIN K, et al. Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas[J]. Molecular Ecology Notes, 2003, 3(2): 228-232.
[23] MORGAN T S, ROGERS A D, IYENGAR A. Novel microsatellite markers for the European oyster Osrtrea edulis [J]. Molecular Ecology Notes, 2000, 9(4): 495-497.
[24] REECE K S, RIBEIRO W L, GAFFNEY P M, et al. Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-Mendelian segregation ratios[J]. Journal of Heredity, 2004, 95(4): 346-352.
[25] 佟广香, 闫学春, 匡友谊, 等. 马氏珠母贝微卫星快速 分离及遗传多样性分析[J]. 海洋学报, 2007, 29(4): 170-176.
[26] JEFFS P. Multiple sequence alignment with Clustal X[J]. Computer Corner, 1998, 23(1): 78-80.
[27] ROZEN S, SKALETSKY H J. Primer 3. Code available at http:// www-genome.wi.mit. edu/ genome _software/other/ primer3.html, 1998.
[28] BOTSTEIN D, WHITE R. L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms
[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
[29] WEBER J L. Informativeness of human (dC-dA) n (dG-dT) nploymorphisms[J]. Genomics, 1990, 7(3): 524-530.
[30] WANG Z, WEBER J L, ZHING G, et al. Survey of plant short tandem DNA repeat[J]. Theoretical and Applied Genetics, 1994, 88: 1-6.
[31] BRENNER S, ELGAR G, SANDFORD R, et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome[J]. Nature, 1993, 366: 265-268.
[32] CHISTIAKO D A, HELLEMAN B, VOLCKAERT F A M. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics[J]. Aquaculture, 2006, 255(1?4): 1-29.
[33] YU D H, CHU K H Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata in southern China[J]. Aquaculture, 2006, 258(1―4): 220-227.
[34] YU D H, CHU K H Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP[J]. Journal of Exeperimental Marine Biology and Ecology, 2006, 333(1): 140-146.
[35] PEMBERTON J M, SLATE J, BANCROFT D R, et al. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies[J]. Molecular Ecology, 1995, 4: 249-252.
[36] JONES A G, STOCKWELL C A, WALKER D, et al. The molecular basis of a microsatellite null allele from the white sands pupfish[J]. Journal of Heredity, 1998, 89(4): 339-342.
[37] SUGAYA T, IKEDA M, MORI H, et al. Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus[J]. Fisheries Science, 2002, 68(2): 299-305.
[38] LI Q, PARK C, KOBAYASHI T, et al. Inheritance of microsatellite DNA markers in the Pacific abalone Haliotisdiscus hannai[J]. Marine Biotechnology, 2003, 5(4): 331-338.
[39] WANG Y, GUO X. Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution[J]. Biological Bulletin, 2004, 207(3): 247-256.
[40] PAUAUD O, BIAIR M W. Development of a microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L)[J]. Molecular and General Genetics, 1996, 252(5): 597-607.
[41] MA Z Q, RODER M, SORRELLS. Frequencies and sequence characteristics of di, tri-, and tetra-nucleotide microsatellite in wheat[J]. Genome, 1996, 39(1): 123-130.
[42] Smuldersm J M. Use of short microsatellites from detabase sequences to generate polymorphisms among Lycopersicon esculentum cultivates and accessions of other Lycopersicon species[J]. Theoretical and Applied Genetics, 1997, 94(2): 264-272.
/
〈 | 〉 |