全球三大洋底高原重力异常与地壳厚度特征及对比研究*
罗怡鸣(1993—), 女, 广东省河源市人, 博士研究生, 从事海洋地质与地球物理研究。E-mail: |
Copy editor: 姚衍桃
收稿日期: 2019-11-13
要求修回日期: 2019-12-25
网络出版日期: 2020-07-27
基金资助
国家重点研发计划(2018YFC0309800)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0205)
国家自然科学基金项目(41776058)
国家自然科学基金项目(41890813)
国家自然科学基金项目(91628301)
国家自然科学基金项目(U1606401)
国家自然科学基金项目(41706056)
国家自然科学基金项目(41976066)
广东省自然科学基金项目(2017A030313243)
中国科学院项目(QYZDY-SSW-DQC005)
中国科学院项目(133244KYSB20180029)
中国科学院项目(Y4SL021001)
版权
Characteristics of gravity anomaly and crustal thickness of three largest oceanic plateaus
Received date: 2019-11-13
Request revised date: 2019-12-25
Online published: 2020-07-27
Supported by
Foundation item: National Key Research and Development Program of China(2018YFC0309800)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0205)
National Natural Science Foundation of China(41776058)
National Natural Science Foundation of China(41890813)
National Natural Science Foundation of China(91628301)
National Natural Science Foundation of China(U1606401)
National Natural Science Foundation of China(41706056)
National Natural Science Foundation of China(41976066)
Natural Science Foundation of Guangdong Province(2017A030313243)
Chinese Academy of Sciences Project(QYZDY-SSW-DQC005)
Chinese Academy of Sciences Project(133244KYSB20180029)
Chinese Academy of Sciences Project(Y4SL021001)
Copyright
翁通爪哇高原、凯尔盖朗高原与沙茨基海隆是全球三大洋底高原, 是大量岩浆喷发到地表的结果, 火山面积分别达1.90×106、1.25×106、0.53×106km2。本文详细分析了该三大洋底高原的地形、剩余地幔布格重力异常(residual mantle Bouguer anomaly, RMBA)与重力反演的相对地壳厚度, 并结合地质与地球化学特征约束进行对比研究。结果显示, 翁通爪哇高原、凯尔盖朗高原与沙茨基海隆分别高出周围海底约4.3、5、4km, 相应的地幔布格重力异常最大变化值分别为250、330、200mGal, 以及相应的相对地壳厚度变化分别为11、13、9km, 表明形成三大洋底高原的岩浆量远远大于正常洋中脊的岩浆量。此外, 三大洋底高原皆形成于洋中脊附近。Nd、Pb、Hf同位素比值分析表明, 翁通爪哇高原的玄武岩组分为洋岛玄武岩; 凯尔盖朗高原大部分类似于洋岛玄武岩, 并含有洋中脊玄武岩组分; 沙茨基海隆的玄武岩组分主要为东太平洋海隆正常洋中脊玄武岩, 却又存在少量位于全球洋岛玄武岩范围内。这些特征揭示了三大洋底高原可能形成于“地幔柱-洋中脊相互作用”。对此本文提出了两种模式: 一为洋中脊被地幔柱拖拽至其上方; 二为洋中脊之下的软流圈受到地幔柱影响, 从而产生超常熔融与超厚地壳。
罗怡鸣 , 张锦昌 , 林间 . 全球三大洋底高原重力异常与地壳厚度特征及对比研究*[J]. 热带海洋学报, 2020 , 39(4) : 100 -115 . DOI: 10.11978/2019116
The Ontong Java Plateau, Kerguelen Plateau, and Shatsky Rise are the three largest oceanic plateaus on Earth, exhibiting voluminous magmatism with areas of 1.90×106, 1.25×106, and 0.53×106 km2, respectively. In this study, we conducted a detailed comparative analysis of bathymetry, residual mantle Bouguer anomaly (RMBA), and gravity-derived relative crustal thickness of the three plateaus, correlating results with geological and geochemical constraints. Relative to adjacent normal seafloors, the Ontong Java Plateau is elevated by 4.3 km; the Kerguelen Plateau, by 5 km; and the Shatsky Rise, by 4 km. The corresponding peak-to-trough amplitudes in RMBA are about 250, 330, and 200 mGal, while the relative crustal thickness variations are of 11, 13, and 9 km, respectively, implying that the magma output forming these three oceanic plateaus is far more than that generated by a normal mid-ocean ridge. Moreover, all three plateaus were formed near mid-ocean ridge or ridge triple junction settings. Isotopic analyses of Nd, Pb, and Hf reveal that the Ontong Java Plateau is characterized by ocean island basalts (OIB); most of the Kerguelen Plateau is predominantly OIB, but is mixed with some mid-ocean ridge basalts (MORB); and most of the Shatsky Rise volcanism shows East Pacific Rise-type MORB, with a few exceptions of OIB-like components. These features imply that these oceanic plateaus were probably formed by “plume-ridge interaction”. Two models are proposed herein: (1) the peripheral mid-ocean ridge is dragged onto the top of the mantle plume, and/or (2) the asthenosphere is fed by plume material nearby, resulting in melting anomalies and the resultant thickened crust along the mid-ocean ridge.
图1 全球地形图地形数据来自于Sandwell等(2014)。黄线圈定区为全球三大洋底高原及热点成因的其他火山体, 红线圈定区为2个大陆溢流玄武岩的例子 Fig. 1 Map of global topography. Topography data are from Sandwell et al (2014). Yellow lines outline the three largest oceanic plateaus and other volcanic edifices associated with hotspot volcanism. Red contours and lines delineate examples of continental flood basalts |
图5 地幔布格重力异常(a、d、g)、剩余地幔布格重力异常(b、e、h)与相对地壳厚度(c、f、i)模型结果a—c. 翁通爪哇高原; d—f. 凯尔盖朗高原; g—i. 沙茨基海隆。图b、c、e、f中的空白为数据缺失的区域; 图a、c、g中的黑线为 Fig. 5 Results of MBA (a, d, g), RMBA (b, e, h), and relative crustal thickness (c, f, i) models: (a~c) Ontong Java Plateau, (d~f) Kerguelen Plateau, and (g~i) Shatsky Rise. Blanks in (b, c, e, f) denote the regions without data. Black lines in (a, c, g) show the position of sections in |
表1 全球三大洋底高原对比Tab. 1 Comparison of the three globally largest oceanic plateaus |
翁通爪哇高原 | 凯尔盖朗高原 | 沙茨基海隆 | |
---|---|---|---|
形态 | 穹隆状 | 条带状 | 条带状 |
面积/(×106km2) | 1.90 | 1.25 | 0.53 |
最大地形隆起高度/km | 4.3 | 5.0 | 4.0 |
ΔMBA/mGal | 250 | 330 | 200 |
ΔRMBA/mGal | 250 | 330 | 200 |
相对地壳厚度/km | 12~23 | 12~25 | 9~18 |
地壳厚度变化值/km | 11 | 13 | 9 |
地震地壳厚度 | 平均30km, 北部最厚38km, 南部最厚33km | 南部21~25km, 埃朗浅滩至少16km, 中部19~21km, 北部15~21km | 9~30km, 大塔穆火山最厚达30km |
喷发环境 | 水下 | 水上 | 水下 |
火山喷发时间/Ma | 122; 90 | 120—0 | 147—121 |
火山年龄变化 | 无连续变化 | 由东南向西北变年轻 | 由西南向东北变年轻 |
热点的火山活动 | 短期内喷发大量岩浆, 出现两期活动 | 初始规模小且分散, 随后岩浆作用变强, 最后再减弱 | 初期喷发大量岩浆, 后期减弱 |
地磁异常 | 主要形成于白垩纪正超时 | 南、中部形成于白垩纪正超时 | 洋中脊三联点磁异常条带特征 |
与洋中脊的关系 | 形成于洋中脊附近 | 形成于洋中脊三联点附近 | 形成于洋中脊三联点 |
玄武岩类型 | OIB | 主要为OIB, 存在少量MORB | 主要为MORB, 存在少量OIB |
注: 地震地壳厚度数据来源于Charvis等(1995)、Operto等(1995, 1996)、Borissova等(2003)、Miura等(2004)、Ridley等(2010)及Korenaga等(2012) |
图7 全球三大洋底高原玄武岩同位素地球化学特征[改自Zhang等(2019)]灰色、粉色、绿色和蓝色阴影分别表示全球OIB、翁通爪哇高原、凯尔盖朗高原和沙茨基海隆的同位素比值变化范围。EPR N-MORB为东太平洋海隆正常洋中脊玄武岩 Fig. 7 Isotopic geochemistry characteristic of the three largest oceanic plateaus, modified from Zhang et al (2019). EPR N-MORB: East Pacific Rise Normal Mid-Ocean Ridge Basalt; OIB: ocean island basalt |
图8 “地幔柱-洋中脊”相互作用模型示意图a. 第一种解释: 洋中脊受到地幔柱拖拽, 跃迁至地幔柱上方, 洋中脊与地幔柱共同提供大量岩浆, 形成洋底高原。b. 第二种解释: 洋中脊之下的软流圈受到地幔柱物质的供给, 从而产生熔融异常, 形成沿洋中脊的地形隆起; 另外, 地幔柱物质上涌至岩石圈底部, 并喷发至地表形成年龄逐渐变化的火山链 Fig. 8 Two plume-ridge interaction models. (a) First model: A peripheral mid-ocean ridge is dragged onto the top of the mantle plume. Ridge and plume together provide a great amount of magma, forming the oceanic plateau. (b) Second model: The asthenosphere is fed by nearby plume material, resulting in melting anomalies along the mid-ocean ridge. In addition, plume material rises to lithosphere and then erupts to surface, creating age-progressive volcanic chain |
[1] |
李三忠, 索艳慧, 刘博, 等, 2018. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 25(5):323-356.
|
[2] |
陆鹿, 严立龙, 李秋环, 等, 2016. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 32(6):1851-1876.
|
[3] |
罗怡鸣, 张锦昌, 林间, 2019. 太平洋大塔穆火山研究进展及对巨型洋底火山成因的启示[J]. 地球物理学进展, 34(2):781-795.
|
[4] |
庞洁红, 李三忠, 戴黎明, 等, 2011. 太平洋洋底高原和海山成因——重点以Shatsky海隆成因为例[J]. 海洋地质与第四纪地质, 31(2):1-10.
|
[5] |
宋晓晓, 李春峰, 2016. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 35(1):17-30
|
[6] |
徐义刚, 2002. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 9(4):341-353.
|
[7] |
徐义刚, 何斌, 黄小龙, 等, 2007. 地幔柱大辩论及如何验证地幔柱假说[J]. 地学前缘, 14(2):1-9.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
/
〈 |
|
〉 |