Kirchhoff向下延拓法在海洋合成多道地震走时反演中的应用*
张茂传(1994—), 男, 江西赣州人, 硕士研究生, 主要从事海洋地球物理研究。E-mail: |
Copy editor: 姚衍桃
收稿日期: 2019-09-16
要求修回日期: 2020-01-17
网络出版日期: 2020-07-27
基金资助
国家自然科学基金项目(41676044)
国家自然科学基金项目(91858207)
国家自然科学基金项目(41890813)
中国科学院战略性先导科技专项(XDA13010105)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0205)
版权
Application of Kirchhoff downward-continued method to travel-time inversion of synthetic multi-channel seismic data
Received date: 2019-09-16
Request revised date: 2020-01-17
Online published: 2020-07-27
Supported by
Foundation item: National Natural Science Foundation of China(41676044)
Foundation item: National Natural Science Foundation of China(91858207)
Foundation item: National Natural Science Foundation of China(41890813)
The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13010105)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0205)
Copyright
海洋多道地震数据建模和成像是获取洋壳速度和构造信息的重要手段。海水层的存在使得多道地震拖缆接收到的折射波走时信息仅仅存在于较远的炮检距, 近炮检距被强振幅海底反射波覆盖, 制约了走时数据拾取和反演效果。本文基于波动方程的Kirchhoff积分法, 成功实现了多道地震数据向下延拓, 获取到了更大炮检距区间的初至折射波走时拾取, 并将其应用于洋中脊新生洋壳2A/2B层的合成多道地震数据走时反演。比较向下延拓前后的走时拾取范围及走时反演结果表明, 向下延拓法能够保持地震波场的运动学和动力学特征不变, 在共炮集数据的更大炮检距范围内进行初至折射走时拾取, 从而增加反演的数据选择和浅层射线覆盖, 反演结果能更加准确地分辨出洋壳2A/2B层界面, 并得到更高的分辨率和更准确的速度结构剖面。
关键词: 海洋多道地震; Kirchhoff积分; 向下延拓; 走时反演; 洋壳2A/2B层
张茂传 , 徐敏 , 赵旭 , 张佳政 , 查财财 , VithanaM.V.P. , 狄会哲 , 曾信 . Kirchhoff向下延拓法在海洋合成多道地震走时反演中的应用*[J]. 热带海洋学报, 2020 , 39(4) : 80 -90 . DOI: 10.11978/2019087
Velocity model building and seismic imaging from marine multi-channel seismic (MCS) data are essential to obtain the structural information of oceanic crust. Existence of the seawater layer makes first-arrival refraction phases recorded by streamer only existed in far offset, while most of them in near offset are masked by the strong amplitude seafloor reflection phase, affecting travel-time picking and inversion. Based on the Kirchhoff integral approach to wave equation, we successfully implement the downward continuation (DC) method to the MCS data, and obtain first-arrival travel-time picks within a wider offset range. The method is applied to the synthetic MCS data simulated based on layer 2A/2B structure of newborn crust along a mid-ocean ridge, and first-arrival picking range and inversion result are compared before and after the DC. The DC method can expand offset range for first-arrival refraction picking and increase the ray coverage in the shallow depth, without changing the kinematics and dynamic characteristics of seismic wave field. The inversion results can more precisely distinguish the layer 2A/2B interface, and obtain higher resolution and more accurate velocity profile.
图1 波动方程基准面延拓图示[修改自Berryhill (1984)]观测面上的倒三角表示检波器, 延拓面上的圆点表示向下延拓后的检波器位置 Fig. 1 Wave equation datuming, modified from Berryhill (1984). The inverted triangles in the observation plane stand for hydrophones, and the hydrophones’ location after DC is indicated by dots |
图2 海洋多道地震向下延拓前(a)和延拓后(b)的示意图红色五角星为气枪震源; 观测面上的黑色倒三角表示检波器, 延拓面上的圆点表示延拓后检波器的位置; 黄色线条为水听器拖缆;图a中绿色、红色射线分别示意第一道和最后一道的收敛情况; 图b中蓝色射线表示最后的收敛情况 Fig. 2 Schematic diagrams of MCS data acquisition before (a) and after (b) DC. Red stars represent the air-gun sources, inverted triangles in observation plane present hydrophones, and the hydrophones’ locations after DC are indicated by dots. Marine streamer is shown by the yellow line; green, red and blue rays indicate the convergence of the first and last channels and the final convergence, respectively |
图4 典型快速扩张洋脊新生洋壳Penrose分层模型(a)[修改自Vithana等(2019)]和原始共炮点道集射线(b)、第一步共炮点道集延拓射线(c)、第二步共接收点道集延拓射线(d)示意图红色五角星表示炮点位置; 绿色线段表示初至折射波拾取的范围; 白色射线表示有效折射波, 红色射线表示海底反射波; 黑色射线表示延拓之后远偏移距中不可靠的初至波, 对应水面缆记录不到的远偏移距震相 Fig. 4 (a) Layered Penrose model of young oceanic formed along a fast-spreading ridge, modified from Vithana et al (2019); schematic ray paths of (b) original common shot gather data, (c) first-step DC of common shot gather data, and (d) second-step DC of common receiver gather data. Red star indicates the shot location, and green lines indicate the available picking range of first-arrival. Effective refractive wave, reflective wave and the unreliable first arrivals after DC are marked by white, red and black ray paths, respectively. The black rays correspond to the far offset seismic phases that cannot be recorded at the sea level |
图5 实际延拓后数据与合成地震图的共炮点道集与抽取数据道对比a. 原始共炮点道集; b. 共炮点道集延拓结果; c. 共炮点道集延拓后的合成地震图; d. 共接收点道集延拓结果; e. 共接收点道集延拓后的合成地震图; f. 抽取道的数据对比。图a—e中的红虚线和绿虚线分别表示2A层和2B层的震相, 白色虚线代表抽取的道位置; 图f中的绿线和红线分别代表实际延拓后数据和相应的合成地震图数据 Fig. 5 Comparison of seismic shot gather and traces from DC and synthetic seismograms. (a) Original common shot gather; (b) DC result of common shot gather; (c) synthetic seismogram of DC common shot gather; (d) DC result of common receiver gather; (e) synthetic seismogram of DC common receive gather; and (f) comparison of selected traces from DC result and synthetic seismogram. Seismic phases of layer 2A and 2B in (a~e) are indicated by red and green dash lines, respectively. Vertical white dashed lines indicate the locations of selected traces, and the enlarged real and synthetic traces are marked by green and red dashed lines in (f), respectively |
图7 合成多道地震数据的真实二维速度模型(a)、向下延拓前走时反演的二维速度模型(b)、一维速度模型对比(c)和向下延拓后走时反演的二维速度模型(d)图a、b和d中的白色虚线分别表示图c中黑线、蓝线和红线一维速度模型所在位置 Fig. 7 (a) Real velocity model for original synthetic shot gathers; (b) 2D tomography velocity model before DC; (c) 1D velocity comparison of real model, initial model and tomography model before and after DC; and (d) 2D tomography velocity model after DC. The dotted white lines in (a), (b) and (d) correspond to the one-dimensional velocity models of black, blue and red lines, in (c), respectively |
[1] |
耿建华, 黄海贵, 马在田, 1996. Kirchhoff积分波场延拓基准面静校正方法研究[J]. 同济大学学报, 24(6):665-669.
|
[2] |
金丹, 阎贫, 唐群署, 等, 2011. Kirchhoff波场延拓在OBC记录海水层基准面校正中的应用[J]. 热带海洋学报, 30(6):84-89.
|
[3] |
王祥春, 王延峰, 夏常亮, 等, 2012. Kirchhoff积分法OBS数据地震波场延拓[J]. 现代地质, 26(6):1231-1236.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 | 〉 |