黄鳍金枪鱼酶解物免疫活性及其氨基酸分析
巫楚君(1995—), 女, 广东省清远市人, 硕士研究生, 主要从事中药提取分离技术与应用。email: |
Copy editor: 林强
收稿日期: 2020-11-18
修回日期: 2020-12-27
网络出版日期: 2021-01-04
基金资助
广东省重点领域研发计划(2020B1111030004)
国家重点研发计划项目(2018YFC0311202)
广东省重点领域研发计划资助(2020B1111030004)
广东省自然科学基金(2018A030313088)
广东省自然科学基金(2018A0303130144)
广东省自然科学基金(2018A030313626)
版权
Immunoactivity and Amino Acid Analysis of Enzymatic Hydrolysates of Thunnus albacares
Copy editor: LIN Qiang
Received date: 2020-11-18
Revised date: 2020-12-27
Online published: 2021-01-04
Supported by
Research and Development Plans in Key Areas of Guangdong Province(2020B1111030004)
National Key Research and Development Program of China(2018YFC0311202)
Research and Development Plans in Key Areas of Guangdong Province(2020B1111030004)
Natural Science Foundation of Guangdong Province(2018A030313088)
Natural Science Foundation of Guangdong Province(2018A0303130144)
Natural Science Foundation of Guangdong Province(2018A030313626)
Copyright
本文旨在研究黄鳍金枪鱼(Thunnus albacares)碎肉中4种不同蛋白酶酶解物的3k Da超滤组分对RAW264.7细胞的免疫活性。以RAW264.7细胞为实验模型, 采用噻唑蓝比色法检测细胞增殖活性, 中性红吞噬实验检测细胞吞噬能力, Griess试剂检测细胞培养上清液中NO含量, 并分析酶解物氨基酸组成和分子量分布。实验结果表明, 胰蛋白酶酶解物在12.5~200μg·mL-1范围内无明显细胞毒性, 能增强RAW264.7细胞吞噬能力, 浓度为400μg·mL-1时达到最大值132.50%(P<0.01), 浓度在50~200μg·mL-1范围内能促进巨噬细胞NO释放(P<0.01), 且NO释放量与酶解液浓度存在一定的量效关系; 胰蛋白酶酶解物中必需氨基酸(essential amino acid, EAA)含量最高, 为51.09%, 其碱性氨基酸组氨酸、赖氨酸和精氨酸的含量分别为11.59%、11.00%和6.90%, 均高于其他蛋白酶酶解物, 并且分子量小于1k Da的小肽含量高达97.48%。研究结果表明, 4种蛋白酶酶解物中, 黄鳍金枪鱼碎肉胰蛋白酶酶解物的3k Da组分具有较明显的免疫活性, 这为其作为免疫活性肽的开发利用提供了理论依据。
巫楚君 , 潘剑宇 , 蔡冰娜 , 陶曙红 . 黄鳍金枪鱼酶解物免疫活性及其氨基酸分析[J]. 热带海洋学报, 2021 , 40(6) : 128 -134 . DOI: 10.11978/2020136
In this study, we evaluated the immune activity of ultrafiltration components from yellowfin tuna (Thunnus albacares) meat hydrolyzed by four different proteases on RAW264.7 cells. The RAW264.7 cell line was used as the cell activity screening model in vitro. Methyl thiazolyl tetrazolium (MTT), neutral red and Griess reagent methods were used to detect cell activity, phagocytosis capability and nitric oxide levels in cell culture medium. The amino-acids composition and molecular weight distribution of the hydrolysate were also analyzed. The results show that trypsin hydrolysate had no obvious cytotoxicity in the range of 12.5-200 μg·mL-1 for RAW264.7 cells. It could enhance the phagocytic capacity, and reached the maximum value of 132.50% (P<0.01) at the concentration of 400 μg·mL-1. In the concentration range of 50-200 μg·mL -1, the trypsin hydrolysate could promote nitric oxide release of macrophages (P<0.01), and there was a dose-effect relationship between NO release and the concentration of enzymolysis solution. The content of essential amino acid (EAA, 51.09%) of trypsin hydrolysate was higher than those of the other enzymatic hydrolysates, and the contents of histidine (His, 11.59%), lysine (Lys, 11.00%) and arginine (Arg, 6.90%) were also higher than those of the other enzymatic hydrolysates. The content of small peptides with molecular weight less than 1k Da was as high as 97.48% in trypsin hydrolysate. In the four protease hydrolysates, the 3k Da peptide fraction of trypsin hydrolysate of tuna meat had obvious immune activity, which provides a theoretical basis for its development and utilization as a functional ingredient.
Key words: Thunnus albacares; polypeptide; immunomodulatory activity; amino acid
表1 金枪鱼肉酶解条件Tab. 1 Enzymolysis conditions of tuna meat |
样品组别 | 酶种类 | 料液比(V/V) | pH | 水解温度/℃ | 酶量/( U·g-1) | 水解时长/h |
---|---|---|---|---|---|---|
TPP | 胃蛋白酶 | 1:3 | 2.0 | 37 | 2500 | 6 |
TPT | 胰蛋白酶 | 8.0 | 37 | 3000 | 6 | |
TPA | 碱性蛋白酶 | 8.0 | 50 | 3000 | 4 | |
TPPT | 胃蛋白酶、胰蛋白酶 | 2.0、8.0 | 37 | 2500、3000 | 2、4 |
图4 样品氨基酸组成层次聚类分析图Fig. 4 Cluster analysis diagram of amino acid composition hierarchy of samples |
表2 酶解样品氨基酸组成Tab. 2 Amino acid composition of enzymolysis sample |
样品 | 氨基酸组成/% | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asp | Thr | Ser | Glu | Gly | Ala | Val | Met | Ile | Leu | Tyr | Phe | Lys | His | Arg | Pro | Trp | EAA | |
TPA | 9.49 | 4.84 | 4.16 | 14.09 | 5.08 | 6.47 | 5.01 | 3.14 | 4.21 | 8.11 | 3.66 | 3.85 | 9.39 | 8.43 | 5.97 | 3.19 | 0.92 | 47.89 |
TPP | 9.95 | 4.81 | 4.08 | 13.61 | 4.49 | 6.03 | 5.35 | 3.49 | 4.69 | 8.68 | 4.22 | 4.63 | 6.85 | 9.95 | 5.25 | 2.81 | 1.12 | 49.56 |
TPPT | 9.59 | 4.94 | 4.24 | 13.23 | 4.99 | 6.45 | 5.48 | 3.09 | 4.69 | 8.49 | 1.90 | 4.52 | 9.58 | 7.90 | 6.23 | 3.40 | 1.27 | 49.95 |
TPT | 8.57 | 4.58 | 3.27 | 12.03 | 4.70 | 6.41 | 4.73 | 2.91 | 3.74 | 7.47 | 3.88 | 4.05 | 11.00 | 11.59 | 6.90 | 3.14 | 1.02 | 51.09 |
表3 酶解物不同分子量范围所占峰面积百分比Tab. 3 Percentage of peak area of enzymatic hydrolysates with different molecular weight ranges |
样品组别 | 各组分占峰面积比值/% | |||
---|---|---|---|---|
2~3k Da | 1~2k Da | 0.5~1k Da | <0.5k Da | |
TPP | 2.66 | 22.77 | 28.50 | 46.08 |
TPT | 0.00 | 2.53 | 24.24 | 73.24 |
TPA | 0.00 | 4.23 | 36.39 | 59.39 |
TPPT | 0.00 | 0.00 | 11.92 | 88.08 |
[1] |
白生宾, 陈红香, 钟近洁, 等, 2011. MTT法检测RAW264.7细胞活力及可能因素分析[J]. 中国现代医学杂志, 21(23):2831-2833.
|
[2] |
杜帅, 宋茹, 罗红宇, 2014. 水解金枪鱼碎肉制备高F值寡肽[J]. 中国食品学报, 14(10):124-133.
|
[3] |
纪丽娜, 2012. 金枪鱼头酶解物免疫活性肽的分离及对小鼠腹腔巨噬细胞功能的影响[D]. 湛江: 广东海洋大学: 9-10.
|
[4] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会, 2019. 中国渔业统计年鉴[M]. 北京: 中国农业出版社: 38-40(in Chinese).
|
[5] |
王晓芳, 陈同辛, 2013. 氨基酸与免疫功能的关系[J]. 国际儿科学杂志, 40(1):28-31.
|
[6] |
杨萍, 蔡本利, 洪鹏志, 等, 2009. 黄鳍金枪鱼头蛋白酶解液及其分级组分对小鼠免疫功能的影响[J]. 食品与生物技术学报, 28(1):131-135.
|
[7] |
杨萍, 蔡本利, 洪鹏志, 2010. 黄鳍金枪鱼头蛋白酶解液及分级组分对小鼠脾淋巴细胞增殖的影响[J]. 天然产物研究与开发, 22(3):498-501.
|
[8] |
叶盛旺, 杨最素, 李维, 等, 2019. 青蛤酶解多肽对RAW264.7巨噬细胞的免疫调节作用[J]. 食品科学, 40(7):185-191.
|
[9] |
张爱琳, 段筱筠, 任斐, 等, 2016. 牛乳中主要过敏原的分离及其氨基酸成分分析[J]. 中国乳品工业, 44(12):4-6, 10.
|
[10] |
张彩梅, 张红梅, 于业军, 等, 2005. 扇贝多肽对小鼠免疫功能调节的研究[J]. 中国海洋药物, 24(3):18-21.
|
[11] |
张朋, 贺卯苏, 迟长凤, 等, 2014. 金枪鱼(Katsuwonus pelamis)碎肉蛋白降压肽的酶解制备及活性研究[J]. 海洋与湖沼, 45(5):1092-1098.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 |
|
〉 |