采掘坑位置对珊瑚礁海岸波浪传播变形影响试验
旷敏(1997—), 男, 湖南省衡阳市人, 硕士研究生, 主要从事近岸水动力学研究。email: |
Copy editor: 姚衍桃
收稿日期: 2020-07-29
修回日期: 2021-01-03
网络出版日期: 2021-01-11
基金资助
国家自然科学基金项目(51839002)
国家自然科学基金项目(51679014)
湖南省自然科学基金项目(2020JJ4618)
湖南省研究生科研创新项目(CX20200857)
版权
Laboratory study of wave processes over reef coasts under the impact of an excavation pit with varying pit locations
Copy editor: YAO Yantao
Received date: 2020-07-29
Revised date: 2021-01-03
Online published: 2021-01-11
Supported by
National Natural Science Foundation of China(51839002)
National Natural Science Foundation of China(51679014)
Natural Science Foundation of Hunan Province(2020JJ4618)
Graduate Student Scientific Research Fund of Hunan Province(CX20200857)
Copyright
为研究珊瑚礁坪上采掘坑位置变化对珊瑚礁海岸波浪传播变形的影响, 本文通过物理模型试验测试了采掘坑在不同位置和无坑情况下一系列不规则波工况的波浪特征。结果表明, 随着采掘坑位置朝岸线附近移动直至无坑时, 岸线附近的短波波高逐渐减小; 采掘坑的存在减弱了岸线附近的低频长波波高, 当采掘坑位于岸线附近时, 长波波高还受到局部水深增加的影响而进一步减弱。采掘坑从礁缘移动至岸线附近直到无坑时, 岸线附近的增水逐渐增大, 这种趋势在礁坪水深较大时更为明显。通过相干函数分析, 证明了礁坪上低频长波是由于短波群破碎点的移动而产生, 采掘坑位置的变化对低频长波的产生无明显影响; 通过传递函数分析, 验证了礁坪上的低频长波存在一阶共振放大效应, 采掘坑的存在减弱了这种放大效应, 当坑位于礁坪中间和岸线附近时, 这种减弱效应更为显著。
旷敏 , 姚宇 , 陈仙金 , 张起铭 , 蒋昌波 . 采掘坑位置对珊瑚礁海岸波浪传播变形影响试验[J]. 热带海洋学报, 2021 , 40(4) : 14 -21 . DOI: 10.11978/2020081
To study the effect of varying the location of an excavation pit on wave transformation over the coral reef coast, we tested a series of irregular wave conditions with different pit locations using physical model experiments. We then compared them with the case in the absence of excavation pit. Results show that as the location of the excavation pit moves towards the shoreline until the case with no pit, the short-wave height near the shoreline decreases. The existence of excavation pit also reduces the low-frequency wave height near the shoreline. When the excavation pit is located near the shoreline, the low-frequency wave height is further reduced due to the increase of local water depth. When the excavation pit moves from the reef edge to the shoreline until the case without pit, wave setup near the shoreline increases, and this trend is more evident when the water level of the reef flat is higher. Analysis of the coherence function shows that the low-frequency waves on the reef flat are generated by the break-point shift when the grouped short waves break, and the impacts of varying pit locations on the low-frequency wave generation are insignificant. Transfer function analysis indicates that the first-order resonance amplification exists, associated with the low-frequency wave motions on the reef flat. The effect of resonance amplification is reduced when the pit is present, and such effect is more significant when the pit is located on the central reef flat or near the shoreline.
Key words: coral reef; excavation pit; low-frequency wave; reef-flat resonance; transformation
表1 试验工况表Tab. 1 Test conditions |
工况 | 波高/m | 周期/s | 礁坪水深/m | 采掘坑位置 | 工况 | 波高/m | 周期/s | 礁坪水深/m | 采掘坑位置 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.08 | 1.0 | 0.05 | A | 13 | 0.08 | 1.5 | 0.10 | A |
2 | 0.08 | 1.0 | 0.05 | B | 14 | 0.08 | 1.5 | 0.10 | B |
3 | 0.08 | 1.0 | 0.05 | C | 15 | 0.08 | 1.5 | 0.10 | C |
4 | 0.08 | 1.0 | 0.05 | D | 16 | 0.08 | 1.5 | 0.10 | D |
5 | 0.08 | 1.0 | 0.10 | A | 17 | 0.08 | 2.0 | 0.05 | A |
6 | 0.08 | 1.0 | 0.10 | B | 18 | 0.08 | 2.0 | 0.05 | B |
7 | 0.08 | 1.0 | 0.10 | C | 19 | 0.08 | 2.0 | 0.05 | C |
8 | 0.08 | 1.0 | 0.10 | D | 20 | 0.08 | 2.0 | 0.05 | D |
9 | 0.08 | 1.5 | 0.05 | A | 21 | 0.08 | 2.0 | 0.10 | A |
10 | 0.08 | 1.5 | 0.05 | B | 22 | 0.08 | 2.0 | 0.10 | B |
11 | 0.08 | 1.5 | 0.05 | C | 23 | 0.08 | 2.0 | 0.10 | C |
12 | 0.08 | 1.5 | 0.05 | D | 24 | 0.08 | 2.0 | 0.10 | D |
注: A、B、C分别表示采掘坑在礁缘附近、礁坪中间和岸线附近, D表示无采掘坑 |
图3 短波波高(HSS)、低频长波波高(HIG)和平均水位(MWL)的沿礁变化(${{H}_{S0}}\text{=}0.08\text{m}$, ${{T}_{P}}\text{=}1.5\text{s}$和${{h}_{r}}\text{=}0.10\text{m}$)A、B、C分别表示采掘坑在礁缘附近、礁坪中间和岸线附近的情况, D表示无采掘坑的情况 Fig. 3 Cross-reef variation of short-wave height (HSS), low-frequency wave height (HIG) and mean water level (MWL) along the reef (${{H}_{S0}}\text{=}0.08\text{m}$,${{T}_{P}}\text{=}1.5\text{s}$and${{h}_{r}}\text{=}0.10\text{m}$) |
图4 海岸线附近(G17)的短波波高(${{H}_{SS}}$)、低频长波波高(${{H}_{IG}}$)和波浪增水(${{\bar{\eta }}_{r}}$)随采掘坑位置变化的规律图中红色表示${{h}_{r}}\text{=}0.05\text{m}$, 蓝色表示${{h}_{r}}\text{=}0.10\text{m}$; 圆形表示${{T}_{P}}\text{=}1\text{s}$, 方形表示${{T}_{P}}\text{=}1.5\text{s}$, 三角形表示${{T}_{P}}\text{=}2\text{s}$。A、B、C分别表示采掘坑在礁缘附近、礁坪中间和岸线附近的情况, D表示无采掘坑的情况 Fig. 4 Variation of short-wave height (${{H}_{SS}}$), low-frequency wave height (${{H}_{IG}}$) and setup (${{\bar{\eta }}_{r}}$) near the shoreline (G17) |
图5 ${{H}_{S0}}\text{=}0.08\text{m}$、${{T}_{P}}\text{=}1.5\text{s}$和${{h}_{r}}\text{=}0.10\text{m}$下的波浪谱沿礁变化图a—d分别为采掘坑在礁缘附近、礁坪中间、岸线附近和无采掘坑的情况; 白色水平实线为低频频段与高频频段的分界线, 白色水平划线和点线分别为一阶和二阶理论共振频率, 白色垂直划线代表采掘坑的位置 Fig. 5 Wave spectra across the reef profile (${{H}_{S0}}\text{=}0.08\text{m}$, ${{T}_{P}}\text{=}1.5\text{s}$ and ${{h}_{r}}\text{=}0.10\text{m}$). In each panel, the horizontal solid line denotes the splitting frequency between the short waves and low-frequency waves. The dashed and dotted horizontal lines denote the first-order and second-order resonant frequencies, respectively. The dashed vertical lines denote the location of excavation pit |
图6 ${{H}_{S0}}\text{=}0.08\text{m}$、${{T}_{P}}\text{=}1.5\text{s}$和${{h}_{r}}\text{=}0.10\text{m}$下的自功率谱、相干函数、相位角及传递函数a. 礁前斜坡处(G5)入射短波的包络线自功率谱($S_{\text{G5}}^{\text{env}}$); b. 海岸线附近(G17)的自功率谱(${{S}_{G17}}$); c. $S_{G5}^{env}$与${{S}_{G17}}$的相干函数($R_{x,y}^{2}$); d. $S_{G5}^{env}$与${{S}_{G17}}$的相位角(α); e. $S_{G5}^{env}$与${{S}_{G17}}$的传递函数(${{H}_{x,y}}$)。A、B、C分别表示采掘坑在礁缘附近、礁坪中间和岸线附近的情况, D表示无采掘坑的情况; 左垂直虚线为一阶理论共振频率, 右垂直虚线为二阶理论共振频率 Fig. 6 (a) Auto-spectrum of the envelope of free surface elevation at the reef slope G5 ($S_{\text{G5}}^{\text{env}}$); (b) auto-spectrum near the shoreline G17 (${{S}_{\text{G17}}}$); (c) coherence function ($R_{x,y}^{2}$) between$S_{\text{G5}}^{\text{env}}$ and ${{S}_{\text{G17}}}$; (d) phase angle ($\alpha$) between$S_{\text{G5}}^{\text{env}}$ and ${{S}_{\text{G17}}}$; and (e) transfer function (${{H}_{x,y}}$) between$S_{\text{G5}}^{\text{evn}}$ and ${{S}_{\text{G17}}}$. The left dashed vertical line denotes the first-order resonant frequency, and the right one denotes the second-order resonant frequency |
[1] |
姚宇, 2019. 珊瑚礁海岸水动力学问题研究综述[J]. 水科学进展, 30(1):139-152.
|
[2] |
姚宇, 张起铭, 蒋昌波, 2019. 礁面糙率变化下珊瑚礁海岸附近波浪传播变形试验[J]. 科学通报, 64(9):977-985.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
/
〈 | 〉 |