湛江湾内湾环境容量计算与排污治理
石泳昊(1994—), 男, 浙江省绍兴市人, 硕士研究生, 从事河口动力、水环境研究。email: |
Copy editor: 姚衍桃
收稿日期: 2020-08-03
修回日期: 2020-12-29
网络出版日期: 2021-01-12
基金资助
国家重点研发计划项目(2016YFC0402603)
广东海洋创新联盟共享机制建立及科技创新发展研究(GDOE[2019]A54)
版权
Environmental capacity calculation and sewage treatment in Inner Zhanjiang Bay
Copy editor: YAO Yantao
Received date: 2020-08-03
Revised date: 2020-12-29
Online published: 2021-01-12
Supported by
National Key Research and Development Project(2016YFC0402603)
Research on the Establishment of Sharing Mechanism and Scientific and Technological Innovation Development of Guangdong Marine Innovation Alliance(GDOE[2019]A54)
Copyright
本文基于TELEMAC-MASCARET数值模型系统, 将主要污染物作为示踪剂加入到二维水动力模型中, 采用模型试算法计算了湛江湾内湾环境容量, 并在环境容量计算和陆源污染调查的基础上, 提出了排污治理的措施。计算结果显示, 2019年湛江湾内湾排污口污染物COD (Chemical Oxygen Demand)、DIN (Dissolved Inorganic Nitrogen)、DIP(Dissolved Inorganic Phosphorus)和石油类的环境容量分别为11721t·a-1、1388t·a-1、141t·a-1和326t·a-1, 排污口点源污染物COD、DIN、DIP和石油类的剩余环境容量总量分别为10426t·a-1、213t·a-1、70t·a-1和314t·a-1。根据这一结果, 本文认为应削减南调街麻屈垉、龙头镇消坡垉出入水口、坡头区科技产业园官渡园区和湛江市城市污水处理有限公司坡头水质净化厂排污口超标水质因子的排放量, 同时提出了相应的排污治理对策: 污水处理、管网建设、新建污水处理厂、排污口调配。
石泳昊 , 贾良文 , 张恒 , 林怡彤 . 湛江湾内湾环境容量计算与排污治理[J]. 热带海洋学报, 2021 , 40(4) : 134 -142 . DOI: 10.11978/2020086
We add main pollutants as tracers to the two-dimensional hydrodynamic model of the TELEMAC-MASCARET numerical model system, and test algorithm to calculate the environmental capacity of Inner Zhanjiang Bay. Based on the environmental capacity calculation and sewage treatment survey, we propose some measures for land-based pollution control. In this paper, the environmental capacity of pollutants Chemical Oxygen Demand (COD), Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP), and petroleum in Inner Zhanjiang Bay in 2019 is calculated as 11721, 1388, 141, and 326 t·a-1, respectively. The total environmental capacity of the point source pollutant COD of the discharge outlet is 10426 t·a-1, DIN is 213 t·a-1, DIP is 70 t·a-1, and petroleum is 314 t·a-1. The discharge of water quality factors should be reduced correspondingly to the entrances and exits of Maquyao in Nantou Street, Xiaopoyao in Longtou Town, Guandu Park of Science and Technology Industrial Park in Potou District, and Potou Water Purification Plant of Zhanjiang City Sewage Treatment Co., Ltd. Meanwhile, we preliminarily propose some corresponding sewage treatment countermeasures: sewage treatment methods, pipe network construction, new sewage treatment plant, and sewage outlet deployment.
图2 研究区域排污口位置与定点船只位置分布图定点位置(黑色圆点): A. 海湾大桥以北; B. 海湾大桥以南。各个排污口位置(黑色十字): 1. 南调街麻屈垉; 2. 安铺垉侧排洪排污口; 3. 龙头镇消坡垉出入水口; 4. 坡头区科技产业园官渡园区; 5. 官渡镇居民生活排污口; 6. 湛江市城市污水处理有限公司坡头水质净化厂。该图基于广东省标准地图服务网站下载的审图号为粤S(2018)093号的标准地图制作, 底图无修改 Fig. 2 Location of the sewage outlet in the study area, and the locations of the designated ships |
表1 湛江湾内湾排污口主要污染物环境容量(2019年)Tab. 1 Environmental capacity of main pollutants at the sewage outlet of Inner Zhanjiang Bay (2019) |
排污口 | COD/t·a-1 | DIN/t·a-1 | DIP/t·a-1 | 石油类/t·a-1 |
---|---|---|---|---|
1号 | 501.56 | 67.43 | 7.80 | 11.15 |
2号 | 2858.55 | 225.68 | 21.82 | 24.07 |
3号 | 447.50 | 49.20 | 1.43 | 34.06 |
4号 | 2615.53 | 777.72 | 87.18 | 147.42 |
5号 | 1585.17 | 82.43 | 15.85 | 26.16 |
6号 | 3713.05 | 185.65 | 6.96 | 83.54 |
合计 | 11721.35 | 1388.11 | 141.04 | 326.40 |
表2 湛江湾内湾排污口主要污染物入海通量(2019年)Tab. 2 Fluxes of main pollutants into the sea from the sewage outlet of Inner Zhanjiang Bay (2019) |
排污口 | COD/t·a-1 | DIN/t·a-1 | DIP/t·a-1 | 石油类/t·a-1 |
---|---|---|---|---|
1号 | 196.17 | 105.97 | 23.28 | 3.46 |
2号 | 311.43 | 73.84 | 21.41 | 3.46 |
3号 | 524.13 | 95.41 | 14.29 | 1.61 |
4号 | 88.45 | 4059.02 | 30.23 | 2.06 |
5号 | 85.28 | 44.74 | 2.76 | 0.75 |
6号 | 166.62 | 162.47 | 9.17 | 0.70 |
合计 | 1372.08 | 4541.46 | 101.14 | 12.03 |
表3 湛江湾内湾排污口主要污染物剩余环境容量(2019年)Tab. 3 Residual environmental capacity of main pollutants at the sewage outlet of Inner Zhanjiang Bay (2019) |
排污口 | COD/t·a-1 | DIN/t·a-1 | DIP/t·a-1 | 石油类/t·a-1 |
---|---|---|---|---|
1号 | 305.39 | 0.00 | 0.00 | 7.69 |
2号 | 2547.11 | 151.83 | 0.41 | 20.61 |
3号 | 0.00 | 0.00 | 0.00 | 32.45 |
4号 | 2527.08 | 0.00 | 56.96 | 145.36 |
5号 | 1499.89 | 37.69 | 13.09 | 25.41 |
6号 | 3546.42 | 23.18 | 0.00 | 82.85 |
合计 | 10425.90 | 212.70 | 70.46 | 314.37 |
[1] |
程海鸥, 马启敏, 杨锋, 2009. 湛江湾海水富营养化水平和浮游植物多样性分析[J]. 海洋湖沼通报, (3):121-126.
|
[2] |
冯启申, 李彦伟, 2010. 水环境容量研究概述[J]. 水科学与工程技术, (1):11-13.
|
[3] |
付意成, 徐文新, 付敏, 2010. 我国水环境容量现状研究[J]. 中国水利, (1):26-31.
|
[4] |
李适宇, 李耀初, 陈炳禄, 等, 1999. 分区达标控制法求解海域环境容量[J]. 环境科学, 20(4):96-99.
|
[5] |
王晓玮, 赵骞, 赵仕兰, 2012. 海洋环境容量及入海污染物总量控制研究进展[J]. 海洋环境科学, 31(5):765-769.
|
[6] |
于雷, 吴舜泽, 徐毅, 2007. 我国水环境容量研究应用回顾及展望[J]. 环境保护, (6): 46-48, 57 (in Chinese).
|
[7] |
袁旗, 许振勇, 彭华强, 等, 2016. 湛江湾及其附近海域近5年海水中氮、磷变化趋势研究[J]. 绿色科技, (24):41-45 (in Chinese).
|
[8] |
张鹏, 魏良如, 赖进余, 等, 2019. 湛江湾夏季陆源入海氮磷污染物浓度、组成和通量[J]. 广东海洋大学学报, 39(4):63-72.
|
[9] |
张永良, 1992. 水环境容量基本概念的发展[J]. 环境科学研究, 5(3):59-61.
|
[10] |
周密, 王华东, 张义生, 1987. 环境容量[M]. 长春: 东北师范大学出版社 (in Chinese).
|
[11] |
朱静, 王靖飞, 田在峰, 等, 2009. 海洋环境容量研究进展及计算方法概述[J]. 水科学与工程技术, (4):8-11.
|
/
〈 | 〉 |