红海榄肉桂酸-4-羟基化酶基因的克隆与表达分析
谢勇(1996—), 男, 湖北省仙桃市人, 硕士研究生, 从事海洋环境研究。email: |
Copy editor: 林强
收稿日期: 2021-12-29
修回日期: 2022-03-31
网络出版日期: 2022-04-14
基金资助
国家重点研发计划项目(国家科技基础资源调查专项)(2017FY100700)
国家自然科学基金重点项目(U1901211)
国家自然科学基金重点项目(41876126)
国际伙伴计划(133244KYSB20180012)
中国科学院A类战略性先导科技专项(XDA23050200)
中国科学院A类战略性先导科技专项(XDA19060201)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0305)
Cloning and expression analysis of Cinnamate-4-hydroxylase gene from Rhizophora stylosa
Copy editor: LIN Qiang
Received date: 2021-12-29
Revised date: 2022-03-31
Online published: 2022-04-14
Supported by
National Key Research and Development Program of China(2017FY100700)
National Natural Science Foundation of China(U1901211)
National Natural Science Foundation of China(41876126)
International Partnership Program of Chinese Academy of Sciences(133244KYSB20180012)
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23050200)
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19060201)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0305)
肉桂酸-4-羟基化酶是木质素合成反应中的关键酶, 木质素合成反应对于植物耐受重金属胁迫有重要作用。本研究利用同源克隆和cDNA末端快速扩增方法(rapid amplification of cDNA ends, RACE)从红海榄叶片中克隆得到一条肉桂酸-4-羟基化酶基因, 命名为RsC4H, 生物信息学分析结果显示RsC4H基因的cDNA全长为2006bp, 开放阅读框长1572bp, 共编码523个氨基酸。该基因编码蛋白的相对分子质量为60.18kD, 是亲水性的不稳定蛋白, 二级结构以α螺旋(47.42%)和无规则卷曲(32.70%)为主, 该蛋白在N端和C端分别包含一个跨膜结构, 不含有信号肽, 主要在膜结构或内质网上发挥功能, 属于p450超家族。RsC4H蛋白与其他植物的C4H蛋白相似性较高, 系统发育树结果显示其与笋瓜(Cucurbita maxima, XP_023007159.1)、南瓜(Cucurbita moschata, XP_022947682.1)的亲缘关系更近。qRT-PCR结果显示, 红海榄能快速响应重金属胁迫, 提高RsC4H基因的表达量, 促进木质素生成并增加细胞壁厚度以阻止金属离子进入细胞。此研究结果丰富了红树植物抗重金属胁迫基因库, 为从分子水平揭示红海榄耐受重金属胁迫机制提供了基础资料。
关键词: 红海榄; 肉桂酸-4-羟基化酶; 基因克隆; 生物信息学分析
谢勇 , 王友绍 , 张维仕 . 红海榄肉桂酸-4-羟基化酶基因的克隆与表达分析[J]. 热带海洋学报, 2022 , 41(6) : 20 -27 . DOI: 10.11978/2021184
Cinnamate-4-hydroxylase is a key enzyme in lignin synthesis which plays an important role in plant tolerance to heavy metal stress. In this study, a cinnamate-4-hydroxylase gene named RsC4H was cloned from the leaves of Rhizophora stylosa by homologous cloning and rapid amplification of cDNA ends (RACE). Bioinformatics analysis showed that the full length of RsC4H gene cDNA was 2006bp, the length of open reading frame was 1572bp, and encoded 523 amino acids. The relative molecular weight of the encoded protein is 60.18kD. It is a hydrophilic unstable protein with secondary structure alpha-helix (47.42%) and random coil (32.70%), this protein contains a transmembrane structure at the N-terminal and C-terminal, respectively, and does not contain signal peptides. It is mainly distributed on the membrane structure or endoplasmic reticulum to function, and belongs to P450 superfamily. RsC4H protein has high similarity with C4H protein of other plants. The phylogenetic tree results showed that it was closer to Cucurbita maxima (xp_023007159.1) and Cucurbita moschata (xp_022947682.1). qRT-PCR results showed that Rhizophora stylosa could quickly respond to heavy metal stress, improve the expression of RsC4H gene, promote lignin production, increase cell wall thickness and prevent metal ions from entering cells. The results enrich the gene pool of mangrove plants resistant to heavy metal stress, and lay a foundation for revealing the mechanism of heavy metal stress tolerance of mangrove at the molecular level.
表1 引物列表Tab.1 Primer list |
引物名称 | 引物序列(5′ to 3′) |
---|---|
C4H-F(中间片段) | AAGGGCCAGGACATGGTNTTYAC |
C4H-R(中间片段) | CTCGTTGATCTCNCCYTTYTGYTG |
C4H-GSP-5′ | TCACGCTCTTGGTGCTTC |
C4H-NGSP-5′ | CAAAGCTCTGTGCCAATC |
C4H-GSP-3′ (RACE) | GCAGTACCGATATGGTTGGG |
C4H-NGSP-3′ (RACE) | GGGATTGTGCTCAGAAGAAG |
UPM | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT |
UPM short | CTAATACGACTCACTATAGGGC |
18S rRNA-F(qRT-PCR) | ATTGGAGGGCAAGTCTGGTG |
18S rRNA-R(qRT-PCR) | GATCGACCCATCCCAAGGTC |
C4H-F(qRT-PCR) | TTGATAGCAGGTTTGAGAGTGAGG |
C4H-R(qRT-PCR) | CCTCTCAAGAATGGTCTCAAAATG |
表2 生物信息学分析软件或网址Tab. 2 Bioinformatics analysis software or website |
预测项目 | 软件版本/网址 |
---|---|
同源比对 | Nucleotide BLAST |
开放阅读框查找 | http://www.bio-soft.net/sms/index.html |
理化性质预测 | https://web.expasy.org/protparam/ |
保守结构域查找 | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi |
信号肽分析 | http://www.cbs.dtu.dk/services/SignalP-4.0/ |
跨膜结构查询 | http://www.cbs.dtu.dk/services/TMHMM/ |
二级结构 | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html |
三维模型 | https://swissmodel.expasy.org/ |
亚细胞定位 | https://wolfpsort.hgc.jp/ |
系统发育树构建 | MEGA6 |
[1] |
黄利娜, 吴光斌, 匡凤元, 等, 2020. 莲雾果实C4H基因的克隆及在NO处理下的表达分析[J]. 集美大学学报(自然科学版), 25(2): 105-112.
|
[2] |
梁惠桢, 朱家红, 戴好富, 等, 2018. 海南龙血树肉桂酸-4-羟基化酶基因(DcC4H)的克隆及表达分析[J]. 分子植物育种, 16(24): 7984-7989.
|
[3] |
芮海云, 刘清泉, 沈振国, 2019. 质外体蛋白质在植物重金属耐性中的作用[J]. 生物学杂志, 36(3): 88-91.
|
[4] |
宋晖, 王友绍, 2012. 萘胁迫下秋茄MnSOD基因和C4H基因的实时定量表达分析[J]. 生态科学, 31(2): 104-108.
|
[5] |
宋慕波, 周伟政, 唐永胜, 等, 2020. 荸荠肉桂酸4-羟基化酶基因的克隆及其在鲜切荸荠黄化过程中的表达分析[J]. 基因组学与应用生物学, 39(2): 666-673.
|
[6] |
宋西红, 郝磊, 吕晓玲, 等, 2015. 紫苏肉桂酸4-羟基化酶基因的克隆与表达[J]. 广东农业科学, 42(11): 124-129.
|
[7] |
王友绍, 孙翠慈, 王玉图, 等, 2019. 生态学理论与技术创新引领我国热带、亚热带海洋生态研究与保护[J]. 中国科学院院刊, 24(1): 121-129.
|
[8] |
王友绍, 2019. 红树林分子生态学[M]. 北京: 科学出版社: 23-24.
|
[9] |
姚胜波, 王文钊, 李明卓, 等, 2015. 茶树肉桂酸4-羟基化酶基因的克隆及表达分析[J]. 茶叶科学, 35(1): 35-44.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
/
〈 |
|
〉 |