海洋生物学

不同升温速率对桡足类高起始致死温度的影响

展开
  • 1. 国家海洋局海洋生态系统与生物地球化学重点实验室, 国家海洋局第二海洋研究所, 浙江 杭州, 310012; 2. 浙江大学环境与资源学院, 浙江 杭州, 310029; 3. 农业部海洋与河口渔业重点开放实验室, 上海, 200090
江志兵(1983―), 男, 浙江省温岭市人, 研究实习员, 主要从事海洋生物研究, E-mail: jzb1217@126.com

收稿日期: 2008-01-14

  修回日期: 2008-05-08

  网络出版日期: 2010-05-24

基金资助

国家重点基础研究发展计划(2010CB428903); 科技部社会公益研究专项资金项目(2004DIB3J087); 国家海洋局青年科学基金
(2008113); 海洋公益性行业科研专项经费项目资助(200805069); 国家专项(908-02-04-0, 908-ZC-II-04); 国家海洋局专项(No.
2011914); 国家海洋局第二海洋研究所基本科研业务费专项(JT0806, JG0921)

Effect of heating rate on the upper incipient lethal temperature for copepods

Expand
  • 1. Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hang-zhou, 310012, China; 2. College of Environmental and Resource Science, Zhejiang University, Hangzhou 310029, China; 3. Key Laboratory of Marine and Estuarine and Fisheries, Ministry of Agriculture, Shanghai 200090, China
江志兵(1983―), 男, 浙江省温岭市人, 研究实习员, 主要从事海洋生物研究, E-mail: jzb1217@126.com

Received date: 2008-01-14

  Revised date: 2008-05-08

  Online published: 2010-05-24

Supported by

国家重点基础研究发展计划(2010CB428903); 科技部社会公益研究专项资金项目(2004DIB3J087); 国家海洋局青年科学基金
(2008113); 海洋公益性行业科研专项经费项目资助(200805069); 国家专项(908-02-04-0, 908-ZC-II-04); 国家海洋局专项(No.
2011914); 国家海洋局第二海洋研究所基本科研业务费专项(JT0806, JG0921)

摘要

为探明升温速率对桡足类热忍受能力的影响, 并找出一个相对合适的升温速率作为其高起始致死温度(upper incipient lethal temperature, UILT)试验中的标准升温速率, 研究了中华哲水蚤Calanus sinicus、真刺唇角水蚤Labidocera euchaeta、精致真刺水蚤Euchaeta concinna和背针胸刺水蚤Centropages dorsispinatus等4种桡足类在1℃•h-1、0.1℃•min-1、1℃•min-1和突然暴露等4个不同升温速率下的UILT。结果表明, 同一种桡足类在不同升温速率下的热忍受能力存在较大的差异, 各种桡足类的UILT均在升温速率为0.1℃•min?1时最大, 高于或低于该升温速率, 其UILT都降低。因此, 建议桡足类UILT实验的标准升温速率为0.1℃•min-1。在0.1℃•min-1的标准升温速率下, 各种桡足类的热忍受能力从强到弱依次为真刺唇角水蚤、背针胸刺水蚤、精致真刺水蚤、中华哲水蚤, 其24h-UILT分别为31.0℃、29.6℃、29.1℃和27.7℃, 48h-UILT分别为30.1℃、29.5℃、28.6℃和27.3℃, 各种桡足类的热忍受能力间均有显著差异。

本文引用格式

江志兵,曾江宁,陈全震,廖一波,高爱根,徐晓群,寿鹿, . 不同升温速率对桡足类高起始致死温度的影响[J]. 热带海洋学报, 2010 , 29(3) : 87 -92 . DOI: 10.11978/j.issn.1009-5470.2010.03.087

Abstract

To explore how heating rate influences the thermal tolerance of copepods and to recommend heating rate criteria during copepod upper incipient lethal temperature (UILT) tests, four copepod species (Calanus sinicus, Labidocera euchaeta, Euchaeta concinna, Centropages dorsispinatus) collected from the Yueqing Bay were studied in laboratory under different heat-ing rates (1℃•h-1, 0.1℃•min-1, 1℃•min-1, and abrupt exposure). The results showed that thermal tolerance of the same copepod species varied with heating rate, and all the experimental copepods decreased in number from a heating rate of 0.1℃•min-1 to-wards quicker or slower heating rates. Thus, the rate of 0.1℃•min-1 was considered as the standard heating rate for UILT experi-ments. In the trial conducted at 0.1℃•min-1, the 24h-UILT of L. euchaeta, C. dorsispinatus, E. concinna and C. sinicus were 31.0℃, 29.6℃, 29.1℃ and 27.7℃, respectively; the 48h-UILT of L. euchaeta, C. dorsispinatus, E. concinna and C. sinicus were 30.1℃, 29.5℃, 28.6℃ and 27.3℃, respectively. Differences of thermal sensitivity between these animals were all significant.

参考文献

[1] LAHDES E. Acute thermal tolerance of two Antarctic cope-pods, Calanoides acutus and Calanus propinquus[J]. Journal of Thermal Biology, 1995, 20 (1?2): 75-78.
[2] 蔡泽平, 陈浩如, 金启增, 等. 热废水对大亚湾三种经济鱼类热效应的研究[J]. 热带海洋, 1999, 18(2): 12-19.
[3] MORA C, MAYA M F. Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes[J]. Journal of Thermal Biology, 2006, 31: 337-341.
[4] 廖一波, 陈全震, 曾江宁, 等. 海洋桡足类的热耐受性[J]. 应用生态学报, 2008, 19(2): 449-452.
[5] 江志兵, 曾江宁, 陈全震, 等. 滨海电厂冷却水余热和余氯对中华哲水蚤的影响[J]. 应用生态学报, 2008, 19(6): 1401-1406.
[6] KIVIVUORI L A, LAHEDS E O. How to measure the ther-mal death of Daphnia? A comparison of different heat tests and effects of heat injury[J]. Journal of Thermal Biology, 1996, 21(5/6): 305-311.
[7] FANGUE N A. BENNETT W A. Thermal tolerance re-sponses of laboratory acclimated and seasonally acclimatized Atlantic stingray Dasyatis sabina
[J]. Copeia, 2003, 2: 315-325.
[8] HUTCHISON V H. Factors influencing thermal tolerance of individual organisms[C]∥ESCH G W, McFARLANCE R. Symposium Series of the National Technical Information Service. VA: Springfield, 1976, 10-26.
[9] BECKER C D, GENOWAY R G. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish[J]. Environmental Biology of Fishes, 1979, 4: 245-256.
[10] SELONG J H, MCMAHON T E, ZALE A V, et al. Effect of temperature on growth and survival of bull trout, with appli-cation of an improved method for determining thermal tol-erance in fishes[J]. Transactions of American Fisheries Soci-ety, 2001, 130: 1026-1037.
[11] LUTTERSCHMIDT W L, HUTCHISON V H. The critical thermal maximum: history and critique[J]. Canadian of Journal of Zoology, 1997, 75: 1561-1574.
[12] FRY F E J. Responses of vertebrate poikilotherms to tem-perature[M]∥ROSE A H. Thermobiology. NY: Academic Press, 1967: 375-409.
[13] COX D K. Effect of three heating rates on the critical ther-mal maximum of bluegill[M]∥GIBBONS J W, SHARTIZ R R. Thermal Ecology. Savannah, GA: US Atomic Energy Commission, 1974: 158-163.
[14] ELLIOT J M, ELLIOT J A. The effect of the rate of the temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout[J]. Journal of Fish Biology, 1995, 47: 917-919.
[15] GALBREATH P F, ADAMS N D, MARTIN T H. Influence of heating rate on measurement of time to thermal maximum in trout[J]. Aquaculture, 2004, 241: 587-599.
[16] 马胜伟, 沈盎绿, 沈新强. 水温对不同鱼类的急性致死效应[J]. 海洋渔业, 2005, 27(4): 298-303.
[17] GONZÁLEZ J G. Critical thermal maxima and upper lethal temperatures for the calanoid copepods Acartia tonsa and A. clausi. [J] Marine Biology, 1974, 27(3): 219-223.
[18] 杨纪明, 李红玲. 渤海真刺唇角水蚤摄食的初步研究[J]. 应用生态学报, 1997, 8(3): 299-303.
[19] COCKING A W. The effect of high temperature on roach (Rutilus rutilus).Ⅱ: The effect of temperature increasing at a known constant rate[J]. The Journal of Experimental Biology, 1959, 36: 217-226.
[20] BARKER S C, TOWNSEND D W, HACUNDA J S. Mor-talities of Atlantic hearing, Clupea h. harengus, smooth flounder, Liopsetta putnami, and rainbow smelt, Osmerus mordax, larvae expose to acute thermal shock[J]. Fishery Bulletin, 1981, 79: 198-200.
[21] HUTCHISON V H, MURPHY K. Behavioral thermoregula-tion in the salamander Necturus maculosus after heat shock[J]. Comparative Biochemistry and Physiology, 1985, 82A: 391-394.
[22] HUTCHISON V H. Critical thermal maxima in salaman-ders[J]. Physiological Zoology, 1961, 34: 92-125.
[23] BEITINGER T L, BENNETT W A, MCCAULEY. Tem-perature tolerances of North American fishes exposed to dy-namic changes in temperature
[J]. Environmental Biology of Fishes, 2000, 58: 237-275.
[24] 陈丽华, 陈钢, 李少菁, 等. 温盐度对厦门港春季主要桡足类呼吸率影响的实验[J]. 台湾海峡, 2001, 20(增刊): 184-189.
[25] 郑重, 李少菁, 许振祖. 海洋浮游生物学[M]. 北京: 海洋出版社. 1984.
[26] 黄加祺, 郑重. 温度和盐度对厦门港几种桡足类存活率的影响[J]. 海洋与湖沼, 1986, 17(2): 161-167.
[27] 徐兆礼, 沈新强, 马胜伟. 春、夏季长江口临近水域浮  游动物优势种的生态特征[J]. 海洋科学, 2005, 29(1): 13-19.
[28] 徐兆礼. 东海精致真刺水蚤 (Euchaeta concinna) 种群生态特征[J]..海洋与湖沼, 2006, 37(2): 97-104.
[29] BAMBER R N. The influence of rising background tem-perature on the effects of marine thermal effluents[J]. Journal of Thermal Biology, 1995, 20(1?2): 105-110.
[30] JIANG Z B, ZENG J N, CHEN Q Z, et al. Tolerance of co-pepods to short-term thermal stress caused by coastal power stations[J]. Journal of Thermal Biology, 2008, 33(7): 419-423.
[31] MELTON B R, SERVISS G M. Florida Power Corpora-tion-Anclote Power Plant entrainment survival of zooplank-ton[J]. Environmental Science and Policy, 2000, 3(supple-ment 1): 233-248.
[32] JIANG Z B, ZENG J N, CHEN Q Z, et al. Potential impact of rising seawater temperature on copepods due to coastal power plants in subtropical areas[J]. Journal of Experimental Marine Biology and Ecology, 2009, 368: 196-201.

文章导航

/