邢建伟(1988—), 男, 河南省安阳市人, 特聘研究员, 从事海洋生物地球化学与海洋大气沉降研究。email: |
*感谢匿名审稿专家提出的建设性意见和建议。 |
Copy editor: 林强
收稿日期: 2022-10-07
修回日期: 2022-11-11
网络出版日期: 2022-11-14
基金资助
国家重点研发计划项目课题(2022YFC3104305)
国家自然科学基金(41906035)
山东省自然科学基金(ZR2019BD068)
中国科学院海洋研究所“汇泉青年学者”人才项目
热带海洋环境国家重点实验室开放基金(LTO1903)
Atmospheric deposition and its eco-environmental effects on the South China Sea*
Copy editor: LIN Qiang
Received date: 2022-10-07
Revised date: 2022-11-11
Online published: 2022-11-14
Supported by
National Key Research and Development Program(2022YFC3104305)
National Natural Science Foundation of China(41906035)
Shandong Provincial Natural Science Foundation(ZR2019BD068)
The “Huiquan Young Scholar” Talent Program supported by the Institute of Oceanology, Chinese Academy of Sciences
Open Fund of State Key Laboratory of Tropical Oceanography (SCSIO, CAS)(LTO1903)
海-气界面的物质和能量交换是导致全球气候和生态环境变化的重要原因。作为我国和西北太平洋最大的陆架边缘海, 南海的大气沉降在其外源输入中占有重要地位。随着南海周边国家经济社会的持续快速发展, 人为源污染物通过大气沉降向海洋的输送日益增强, 势必会对南海生态环境产生不可忽视的影响。基于近30年来南海生源要素、微痕量元素以及新污染物微塑料大气沉降的研究报道, 本文系统总结归纳了南海大气干湿沉降物浓度、干湿沉降通量及其影响因素, 并对其生态环境效应进行了分析。结果表明: (1)南海大气颗粒物浓度相较我国东部近海要低, 且基本没有酸雨的沉降, 但受东南亚生物质燃烧和我国化石燃料燃烧排放影响, 南海大气碳质气溶胶浓度和沉降量处于较高水平; (2)南海大气干湿沉降营养盐中均以氮占绝对主导地位, 且各形态氮的比例在不同海域存在较大差异, 沉降物的营养盐结构严重失衡; (3)气溶胶中人为源金属元素的溶解度较高, 多数成分以湿沉降为主, 大气微塑料多以纤维形态存在, 气象条件(降水量、风速等)、源排放强度是控制大气成分浓度和沉降通量的主要因素; (4)大气氮沉降约占南海表层氮输入总量的20%, 大气氮的输入会加重海域的低氧和酸化, 且营养物质沉降对浮游植物的爆发性增殖有重要作用, 大气沉降会对南海这一寡营养生态系统产生多重复杂影响, 这与海域水文条件、初始营养状况、浮游植物类群以及大气成分和沉降特征等密切相关。今后应注重在研究的深度和广度上持续发力, 聚焦各类大气成分尤其是有机态氮磷和新污染物干湿沉降的精准化常态化监测, 从多学科交叉角度深入探明生源要素和微痕量元素大气沉降与南海生态系统之间的影响与反馈机制。大气沉降是南海生物地球化学循环的重要一环, 对南海生态环境的影响是一把“双刃剑”。随着未来南海陆源物质大气沉降作用的持续增强, 这一影响必将更趋复杂和深远。
邢建伟 , 宋金明 . 南海大气沉降及其生态环境效应*[J]. 热带海洋学报, 2023 , 42(3) : 19 -39 . DOI: 10.11978/2022212
The material and energy exchange at the air-sea interface is an important cause of global climate and ecological environment change. As the largest shelf margin sea in China and the Northwest Pacific Ocean, atmospheric deposition plays an important role in the exogenous input of the South China Sea. With the continuous and rapid economic and social development of the surrounding countries in the South China Sea, the transport of anthropogenic pollutants to ocean through atmospheric deposition is increasingly enhanced, which is bound to have a non-negligible impact on the ecological environment of the South China Sea. Based on the research reports of atmospheric deposition of biogenic elements, micro-trace elements and new pollutants microplastics in the South China Sea in the past nearly 30 years, this paper systematically summarized the concentrations, fluxes and influencing factors of atmospheric dry and wet deposition in the South China Sea, and analyzed the eco-environmental effects of atmospheric deposition in the South China Sea. The results show that 1) The concentration of atmospheric particulates in the South China Sea is lower than that in the east coast of China, and there is almost no acid rain deposition. However, the atmospheric carbonaceous aerosol component concentration and deposition in the South China Sea are at a high level due to the influence of biomass burning in Southeast Asia and fossil fuel combustion emissions in China. 2) Nitrogen is the dominant nutrient in the atmospheric dry and wet deposition in the South China Sea, and the proportion of nitrogen species varies greatly in different sea areas, resulting in strong imbalance of nutrient structure in atmospheric deposition. 3) The solubility of anthropogenic metal elements in aerosols is high, and most of them in the form of wet deposition. Aerosol microplastics mostly exist in the form of fiber. Meteorological conditions (precipitation, wind speed, etc.) and source emission intensity are the main factors controlling atmospheric component concentration and deposition flux. 4) Atmospheric nitrogen deposition accounts for about 20% of the total nitrogen input in the sea surface of South China Sea. The addition of nitrogen will aggravate the hypoxia and acidification of the offshore, and nutrient deposition plays an important role in the explosive proliferation of phytoplankton. Atmospheric deposition will have multiple and complex impacts on South China Sea, an oligotrophic ecosystem, which is closely related to hydrologic conditions, initial nutrient status, phytoplankton groups, atmospheric composition and deposition characteristics. In the future, it is suggested that the researchers should pay more attentions to the depth and breadth of the research, focus on the precise and regular monitoring of the dry and wet deposition of various atmospheric components, especially organic nitrogen and phosphorus species and new pollutants, and fully explore the influence and feedback mechanism between the atmospheric deposition of biogenic elements and micro-trace elements and the South China Sea ecosystem from the perspective of interdisciplinarity. Atmospheric deposition is an important part of biogeochemical cycle in the South China Sea, and its impact on the ecological environment is a "double-edged sword". With the continuous enhancement of atmospheric deposition of terrigenous species in the South China Sea in the future, this effect will become more complex and far-reaching.
表1 南海不同海区气溶胶中各形态营养盐的浓度Tab. 1 Concentrations of various nutrients in aerosols in different areas of South China Sea |
表2 南海不同海区降水中各形态营养盐浓度Tab. 2 Concentrations of various nutrients in rainwater in different areas of South China Sea |
区域 | 营养盐浓度/(μmol·L-1) | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|
NH4-N | NO3-N | NO2-N | DIN | DON | DIP | DOP | DSi | ||
珠江口 | 58.57 | 37.14 | — | 95.71 | 57.15 | — | — | — | 樊敏玲 等, 2010 |
北部湾西部 | 27 | 15 | — | — | — | — | — | — | 陈法锦 等, 2018a |
湛江湾 | — | 19.50 | 0.14 | — | — | 0.25 | — | 1.56 | 陈法锦 等, 2017 |
大亚湾 | 33.86 | 38.28 * | — | 72.14 | 15.72 | — | — | — | 陈瑾 等, 2014a |
大亚湾 | 7.16 | 26.43 | 0.39 | 33.98 | 20.33 | 0.75 | 0.38 | 6.82 | Wu et al, 2018b |
西沙永兴岛 | 8.7 | 8.9 | — | 17.6 | — | — | — | — | 肖红伟 等, 2016 |
南海东北部 | 11.67 | 30.16 | — | — | — | 0.04 | — | — | 林久人 等, 2017 |
南海东部 | 23.2 | 9.6 | — | 32.8 | — | — | — | — | 劳齐斌 等, 2018 |
注: *此处为NO3-N+NO2-N之和. |
表3 南海不同海区大气各形态营养盐的干湿沉降通量Tab. 3 Dry and wet deposition fluxes of various nutrients in different areas of South China Sea |
区域 | 营养盐 | 参考文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NH4-N | NO3-N | NO2-N | DIN | DON | DIP | DOP | DSi | |||
干沉降通量/(mmol·m-2·a-1) | 珠江口 | 43.66 | 25.92 | — | 69.58 | 27.87 | — | — | — | 陈中颖 等, 2010 |
大亚湾 | 7.17 | 20.14 | 2.41 | 29.72 | 9.26 | 0.093 | 0.124 | — | 陈瑾 等, 2014b | |
大亚湾 | 0.934 | 8.46 | 0.046 | 9.44 | 16.33 | 0.057 | 0.032 | 0.338 | Wu et al, 2018a | |
湿沉降通量/(mmol·m-2·a-1) | 珠江口 | 60.51 | 40.98* | — | 101.5 | 57.18 | — | — | — | 陈中颖 等, 2010 |
大亚湾 | 68.25 | 84.51 | 4.81 | 157.6 | 19.78 | 0.244 | 0.233 | — | 陈瑾 等, 2014b | |
大亚湾 | 17.5 | 64.4 | 0.97 | 82.87 | 49.7 | 0.133 | 0.068 | 1.19 | Wu et al, 2018b | |
北部湾西部 | 46.44 | 25.92 | — | — | — | — | — | — | 陈法锦 等, 2018a | |
湛江湾 | — | 42.62 | 0.297 | — | — | 0.535 | — | 3.338 | 陈法锦 等, 2017 | |
总(干+湿)沉降通量/(mmol·m-2·a-1) | 珠江口 | 104.2 | 66.90 | — | 171.1 | 85.05 | — | — | — | 陈中颖 等, 2010 |
大亚湾 | 75.42 | 104.6 | 7.22 | 187.3 | 29.04 | 0.337 | 0.357 | — | 陈瑾 等, 2014b | |
大亚湾 | 18.43 | 72.86 | 1.02 | 92.31 | 66.03 | 0.190 | 0.100 | 1.528 | Wu et al, 2018a, 2018b |
注: *此处为NO3-N+NO2-N之和 |
表4 大亚湾气溶胶溶解态微痕量元素浓度(ng·m-3)及干沉降通量(mg·m-2·a-1)Tab. 4 Concentrations (ng·m-3) and dry deposition fluxes (mg·m-2·a-1) of dissolved trace elements in the aerosol of the Daya Bay |
参数 | 元素 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Cu | Ni | Zn | Pb | Cd | Cr | As | Se | V | Mo | Ba | Co | |
溶解态浓度 | 203.5 | 110.7 | 16.16 | 9.58 | 3.54 | 881.7 | 3.01 | 0.62 | 3.12 | 38.9 | 0.42 | 1.29 | 2.04 | 151.8 | 0.08 |
干沉降通量 | 37.54 | 20.07 | 6.02 | 0.70 | 0.21 | 9.46 | 0.84 | 0.0375 | 0.27 | 0.44 | 0.055 | 0.154 | 0.091 | 24.05 | 0.022 |
注: 数据来自Wu等(2018c) |
表5 南海大气降水微痕量元素的浓度(μg·L-1)及湿沉降通量(mg·m-2·a-1)Tab. 5 Concentrations (μg·L-1) and wet deposition fluxes (mg·m-2·a-1) of trace elements in precipitation in South China Sea |
海区 | 参数 | 元素 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Cu | Ni | Zn | Pb | Cd | Cr | As | Se | V | Mo | Ba | Co | ||
深圳近海* | 溶解态浓度 | 22.86 | — | 3.34 | 1.85 | 0.44 | 22.54 | 1.81 | 0.10 | 0.21 | 0.72 | — | 0.19 | — | — | 0.03 |
大亚湾** | 总浓度 | 2800 | 1130 | 230 | 24.9 | 10.1 | 510 | 40 | 7.6 | 16 | 20 | 3.2 | 13 | 8.1 | 1320 | 0.87 |
深圳近海* | 湿沉降通量 | — | — | — | 2.94 | 1.23 | 26.74 | 2.71 | 0.742 | 0.857 | 1.445 | — | 2.16 | — | — | 0.678 |
大亚湾** | 湿沉降通量 | 439.9 | 189.3 | 47.4 | 3.97 | 1.70 | 84.5 | 6.79 | 0.12 | 2.68 | 3.20 | 0.51 | 2.26 | 1.32 | 125.7 | 0.16 |
[1] |
陈法锦, 陈淳青, 周凤霞, 等, 2017. 湛江湾大气湿沉降中营养盐的研究[J]. 中国环境科学, 37(6): 2055-2063.
|
[2] |
陈法锦, 劳齐斌, 李志阳, 等, 2018a. 近15年北部湾西部近岸大气湿沉降中无机氮的研究[J]. 矿物岩石地球化学通报, 37(1): 69-74.
|
[3] |
陈法锦, 孟亚飞, 劳齐斌, 等, 2018b. 2003-2014年珠江口香洲大气无机氮湿沉降变化研究[J]. 广东海洋大学学报, 38(1): 54-62.
|
[4] |
陈瑾, 刘思言, 邓鉴峰, 等, 2014a. 惠州大亚湾大气湿沉降中氮营养盐变化特征的研究[J]. 华南师范大学学报(自然科学版), 46(4): 70-75.
|
[5] |
陈瑾, 卢平, 陈中颖, 等, 2014b. 惠州大亚湾春夏季大气氮磷沉降的研究[J]. 热带海洋学报, 33(2): 109-114.
|
[6] |
陈中颖, 李开明, 林文实, 等, 2010. 珠江口大气氮磷干湿沉降通量及其污染特征[J]. 环境污染与防治, 32(11): 53-57.
|
[7] |
邓银银, 2014. 基于卫星数据的中国近海氮沉降通量估算研究[D]. 青岛: 中国海洋大学, 1-65.
|
[8] |
丁晓君, 代威力, 龙爱民, 等, 2022. 南海气溶胶中溶解性无机磷的空间和季节分布特征[J]. 环境化学, 41(7): 2347-2355.
|
[9] |
樊敏玲, 王雪梅, 王茜, 等, 2010. 珠江口横门大气氮、磷干湿沉降的初步研究[J]. 热带海洋学报, 29(1): 51-56.
|
[10] |
蒋冰艳, 何龙, 陈德华, 等, 2018. 深圳近海区域降水中重金属湿沉降通量及源解析[J]. 环境化学, 37(7): 1460-1473.
|
[11] |
劳齐斌, 朱庆梅, 周欣, 等, 2018. 南海东部大气湿沉降中无机氮的研究[J]. 地球与环境, 46(1): 33-42.
|
[12] |
林久人, 祁建华, 谢丹丹, 等, 2017. 海洋降水中无机离子浓度及湿沉降通量——中国海及西北太平洋降水的研究[J]. 中国环境科学, 37(5): 1706-1715.
|
[13] |
牟英春, 褚强, 张潮, 等, 2018. 南海浮游植物对沙尘和灰霾添加的响应[J]. 中国环境科学, 38(9): 3512-3523.
|
[14] |
石金辉, 2011. 中国近海大气沉降中氮组分的分布特征及对春季水华事件的影响分析[D]. 青岛: 中国海洋大学: 1-131.
|
[15] |
宋金明, 段丽琴, 2017. 渤黄东海微/痕量元素的环境生物地球化学[M]. 北京: 科学出版社: 1-463.
|
[16] |
宋金明, 李学刚, 袁华茂, 等, 2019. 渤黄东海生源要素的生物地球化学[M]. 北京: 科学出版社: 1-870.
|
[17] |
宋金明, 李学刚, 袁华茂, 等, 2020. 海洋生物地球化学[M]. 北京: 科学出版社: 1-690.
|
[18] |
宋金明, 王启栋, 2021. 近40年来对南海化学海洋学研究的新认知[J]. 热带海洋学报, 40(3): 15-24.
|
[19] |
宋金明, 邢建伟, 2022. 大气干湿沉降及其对海洋生态环境的影响[M]//李乃胜, 宋金明, 经略海洋, 189-205,
|
[20] |
田媛, 涂晨, 周倩, 等, 2020. 环渤海海岸大气微塑料污染时空分布特征与表面形貌[J]. 环境科学学报, 40(4): 1401-1409.
|
[21] |
王国祯, 刘偲嘉, 于兴娜, 2021. 珠海市降水化学与沉降特征[J]. 环境科学研究, 34(7): 1612-1620.
|
[22] |
王梦梦, 原梦云, 苏德纯, 2017. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 37(11): 4085-4096.
|
[23] |
王茜, 王雪梅, 钟流举, 等, 2009. 珠江口无机氮湿沉降规律及大气输送的研究[J]. 环境科学学报, 29(6): 1156-1163.
|
[24] |
王少锋, 冯新斌, 仇广乐, 等, 2006. 大气汞的自然来源研究进展[J]. 地球与环境, 34(2): 1-11.
|
[25] |
王欣睿, 刘梦南, 董燕红, 等, 2014. 珠江口海域气溶胶中重金属含量的时间变化特征及入海通量初步估算[J]. 应用海洋学学报, 33(1): 133-139.
|
[26] |
王赞红, 王保民, 崔鹏飞, 等, 2011. 渤海近海大气颗粒物金属元素的入海通量[J]. 海洋环境科学, 30(1): 86-89.
|
[27] |
吴兑, 1990. 西沙群岛旱季小阵雨的酸度及化学成分[J]. 气象, 16(9): 18-22.
|
[28] |
吴兑, 1995. 南海北部大气气溶胶水溶性成分谱分布特征[J]. 大气科学, 19(5): 615-622.
|
[29] |
吴兑, 项培英, 常业谛, 等, 1989. 西沙永兴岛降水的酸度及其化学组成[J]. 气象学报, 47(3): 381-384.
|
[30] |
吴俊晖, 劳齐斌, 曾珍, 等, 2021. 珠江口湿沉降化学特征及其变化趋势[J]. 广东海洋大学学报, 41(3): 60-66.
|
[31] |
肖红伟, 龙爱民, 谢露华, 等, 2014. 中国南海大气降水化学特征[J]. 环境科学, 35(2): 475-480.
|
[32] |
肖红伟, 肖化云, 张忠义, 等, 2016. 西沙永兴岛大气降水化学特征及来源分析[J]. 中国环境科学, 36(11): 3237-3244.
|
[33] |
邢建伟, 宋金明, 袁华茂, 等, 2017. 胶州湾生源要素的大气沉降及其生态效应研究进展[J]. 应用生态学报, 28(1): 353-366.
|
[34] |
邢建伟, 宋金明, 袁华茂, 等, 2020. 胶州湾大气活性硅酸盐干沉降特征及其生态效应[J]. 生态学报, 40(9): 3096-3104.
|
[35] |
徐玲玲, 赵金平, 徐亚, 等, 2011. 大气汞的来源及其浓度分布特征研究进展[J]. 环境污染与防治, 33(11): 82-88, 92.
|
[36] |
徐向荣, 孙承君, 季荣, 等, 2018. 加强海洋微塑料的生态和健康危害研究提升风险管控能力[J]. 中国科学院院刊, 33(10): 1003-1011.
|
[37] |
杨一超, 薛金林, 任景玲, 等, 2020. 夏季南海气溶胶微量元素浓度、溶解度及干沉降通量[J]. 环境科学学报, 40(7): 2365-2374.
|
[38] |
于丽敏, 祁建华, 孙娜娜, 等, 2007. 南、黄海及青岛地区大气气溶胶中无机氮组分的研究[J]. 环境科学学报, 27(2): 319-325.
|
[39] |
周佳佳, 2015. 中国近海大气气溶胶中有机胺的浓度分布及来源[D]. 青岛: 中国海洋大学: 1-64.
|
[40] |
周卫文, 李芊, 葛在名, 等, 2020. 珠江口羽流锋浮游植物群落对大气沉降的生态响应[J]. 热带海洋学报, 39(4): 50-60.
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
CHEN YUH-LING LEE,
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
/
〈 | 〉 |