用于收集岸基海浪能的弹簧辅助摩擦纳米发电机*
徐庆跃(1994—), 男, 安徽省滁州市人, 硕士研究生, 从事摩擦纳米发电机研究。email: |
*感谢赖盈至教授对实验过程及数据分析的指导; 感谢洪泉博士和李朋音对手稿提出的宝贵建议。 |
Copy editor: 姚衍桃
收稿日期: 2022-09-23
修回日期: 2022-10-26
网络出版日期: 2022-12-06
基金资助
国家自然科学基金(42222606)
国家自然科学基金(62103400)
国家自然科学基金(42211540003)
国家重点研发计划(2021YFC3101300)
中国科学院海洋信息技术创新研究院自主部署项目(CXBS202103)
Spring-assisted triboelectric nanogenerator for shore-based ocean wave energy harvesting
Copy editor: YAO Yantao
Received date: 2022-09-23
Revised date: 2022-10-26
Online published: 2022-12-06
Supported by
National Natural Science Foundation of China(42222606)
National Natural Science Foundation of China(62103400)
National Natural Science Foundation of China(42211540003)
National Key R&D Program of China(2021YFC3101300)
Independent Project Deployed by Innovative Academy of Marine Information Technology of CAS(CXBS202103)
海浪能取之不尽, 用之不竭, 是最重要的可再生能源之一, 具有广阔的发掘潜力。本文提出一种用于收集岸基海浪能的新型弹簧辅助摩擦纳米发电机(spring-assisted triboelectric nanogenerator, SS-TENG)。SS-TENG通过“海浪-浮台-弹簧”传动结构实现海浪能的转化, 避免了与海水直接接触, 减少了腐蚀环境对发电模块的损坏。SS-TENG通过两种方式显著增强了输出性能, 一是利用发电模块中弹簧弹性势能的释放增大各个摩擦纳米发电机(triboelectric nanogenerator, TENG)单元电极层与介电层的瞬间接触速度, 使得单个TENG单元输出的峰值电流(peak current, IP)从7.36μA增加到12.12μA; 二是利用发电模块中各个TENG单元间的同步运动, 将它们进行简单的并联即可实现输出的大幅增加, 使得单个TENG单元输出的IP从12.12μA增加到4个并联的43.86μA。SS-TENG转化成的电能可为数字计算器充电并成功点亮160盏LED灯, 验证了SS-TENG的输出能力。SS-TENG结构简单、制作成本低、输出性能及工作的长期稳定性较好, 为岸基海浪能的高效收集及自供电传感器发展提供了新的技术手段。
徐庆跃 , 潘远超 , 马浩翔 , 李长征 , 刘炜灏 , 薛亮 , 韩昌报 , 杨阳 . 用于收集岸基海浪能的弹簧辅助摩擦纳米发电机*[J]. 热带海洋学报, 2023 , 42(4) : 176 -183 . DOI: 10.11978/2022200
As one of the most important renewable energy sources, ocean wave energy is inexhaustible and has broad development potential. Herein, we propose a novel spring-assisted triboelectric nanogenerator (SS-TENG) for harvesting shore-based wave energy. SS-TENG realizes ocean wave energy conversion through the “wave-floating platform-spring” transmission structure, which avoids direct contact with seawater and minimizes the damage to the power generation module caused by a corrosive environment. The output performance of SS-TENG is significantly enhanced in two ways. First, by utilizing the elastic potential energy released by the spring, the instantaneous contact speed between the electrode and dielectric layer is boosted, and the peak current (IP) output by a single triboelectric nanogenerator (TENG) unit increases from 7.36 to 12.12 μA. Second, benefiting from the synchronous movement of each TENG unit, the TENGs can be connected in parallel to achieve the linear increase of IP from 12.12 μA for a single unit to 43.86 μA for four units. SS-TENG can provide sufficient energy to drive a digital calculator and up to 160 high luminosity LEDs, verifying its superior performance. The proposed design has the merits of modest structure, low production cost, excellent output performance, and long-term stability, and is expected to inspire the development of shore-based wave energy generators and self-sufficient ocean sensors.
图3 SS-TENG输出性能的优化a. 弹簧的有无对单个TENG单元的输出电压; b. 电流的影响; c. 弹簧的有无对单个TENG单元的IP的影响; d. 不同数量的TENG单元依次并联后输出的电压; e. 不同数量的TENG单元依次并联后输出的电流; f. 不同数量的TENG单元并联后输出的IP Fig. 3 Structural optimization of SS-TENG. (a) The output voltage, and (b) current of a single TENG unit with or without spring; (c) The output IP of a single TENG unit with or without spring; (d) The output voltage, and (e) current of different numbers of TENG units in parallel; (f) The output IP generated by different numbers of TENG units in parallel |
图4 SS-TENG的输出性能表现a. 不同频率下单个TENG单元的输出电压; b. 不同频率下单个TENG单元的输出电流; c. 不同振幅下单个TENG单元的输出电压; d. 不同振幅下单个TENG单元的输出电流; e. SS-TENG的输出电压、电流随外电阻变化的曲线; f. SS-TENG的输出功率随外电阻变化的曲线 Fig. 4 Output performance of SS-TENG. (a) The output voltage, and (b) current of a single TENG unit with different frequencies; (c) The output voltage, and (d) current of a single TENG unit with different amplitudes; (e) Curves of the output voltage, current, and (f) the power of SS-TENG with different external resistance |
图5 SS-TENG的充电性能a. 采用串联或并联连接的SS-TENG给2.2μF电容器充电时的电压; b. 采用并联连接的SS-TENG给不同电容器充电时的电压 Fig. 5 Charging performance of SS-TENG. (a) The voltage of a 2.2 µF capacitor charging by SS-TENG connected in parallel and in series; (b) The voltage of various capacitors charging by SS-TENG connected in parallel |
图6 SS-TENG的应用测试a. 使用SS-TENG点亮160盏LED灯; b. SS-TENG为计算器充电时的工作电路; c. SS-TENG给100µF电容器充电以及连接计算器后的放电过程 Fig. 6 Applications of SS-TENG. (a) 160 LEDs are lighted up by SS-TENG; (b) The working circuit diagram of SS-TENG for powering a calculator; (c) The process of charging a 100 μF capacitor by SS-TENG and the discharging process after connecting the calculator |
[1] |
胡凯凯, 尹加文, 麦裕良, 等, 2021. 高精度海洋温/盐/酸度集成微纳传感器制造与测试[J]. 传感器与微系统, 40(1): 74-77.
|
[2] |
练继建, 燕翔, 刘昉, 2018. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 168(1): 176-188.
|
[3] |
宋保维, 丁文俊, 毛昭勇, 2012. 基于波浪能的海洋浮标发电系统[J]. 机械工程学报, 48(12): 139-143.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
/
〈 | 〉 |