滨海酸性硫酸盐土壤湿地沉积物中还原性无机硫和活性铁的耦合特性及环境意义
陈波(1985—), 男, 博士, 副教授, 主要从事环境矿物学研究。email: |
收稿日期: 2022-11-07
修回日期: 2023-01-17
网络出版日期: 2023-02-22
基金资助
广西自然科学基金项目(2020GXNSFBA297128)
广西科技基地和人才专项(桂科AD20238041)
广西自然科学基金联合培育项目(2019GXNSFAA245016)
Coupling characteristics of reduced inorganic sulfur and reactive iron in coastal acidic sulfate soil wetland and its environmental significance
Received date: 2022-11-07
Revised date: 2023-01-17
Online published: 2023-02-22
Supported by
Guangxi Natural Science Foundation(2020GXNSFBA297128)
Special Talent Project of Guangxi Science and Technology Base(Guike AD20238041)
Cultivation Project Jointly funded by Guangxi Natural Science Foundation(2019GXNSFAA245016)
滨海酸性硫酸盐土成土母质中富含还原性硫化物(reducing inorganic sulfur, RIS)和活性铁等生源要素, 耦合制约着铁、硫以及重金属元素的环境地球化学行为。为了揭示滨海酸性硫酸盐土壤湿地沉积物中RIS和活性铁的耦合机制及环境意义, 文章通过在钦江河口滨海酸性硫酸盐土壤湿地采集深约40cm的沉积柱状样, 在垂向上对酸性可挥发硫(acid volatile sulfide, AVS)、黄铁矿硫(chromium reducible sulfur, CRS)、元素硫(elemental sulfur, ES)和活性铁[(Fe(Ⅱ)和 Fe(Ⅲ)]的含量和分布规律进行了厘定, 并结合沉积物的理化性质进行探讨分析。结果表明: 钦江河口酸性硫酸土中的活性铁中以Fe(Ⅲ)为主, 活性铁中的Fe(Ⅱ)和Fe(Ⅲ)在环境容易发生相互转换, 氧化还原电位(Eh)越低、有机质(organic matter, OM)含量越高越利于Fe(Ⅲ)还原为Fe(Ⅱ); 还原性无机硫以CRS为主, 其次为AVS以及少量ES, 成岩过程中还原性无机硫会相互转化, 其过程主要受到活性铁和OM控制, 但研究区还原性无机硫形成的限制因素并非活性铁, 而是OM的含量及活性; 较高的OM和Fe(Ⅱ)易造成AVS富集, 较高的Fe(Ⅲ)和Eh值利于ES生成, CRS除受OM和活性铁的控制, 还受到AVS转化率的影响; 研究区大部分样点的CRS/AVS比值较低, 表明AVS不能有效的转化为CRS, 硫化物活性与生物有效性较高。因此应尽量避免外源OM引入和人为活动扰动, 以免造成还原性无机硫氧化释放出H+形成酸害, 同时降低吸附或共沉淀在还原性无机硫上的重金属等污染物的浸出, 以减少环境破坏。
陈波 , 覃子东 , 王锋 , 蔡平雄 , 张生银 . 滨海酸性硫酸盐土壤湿地沉积物中还原性无机硫和活性铁的耦合特性及环境意义[J]. 热带海洋学报, 2023 , 42(5) : 45 -55 . DOI: 10.11978/2022236
The parent materials of acidic sulfate soils in coastal areas are rich in reduced sulfides (reduced inorganic sulfur, RIS) and reactive iron, which jointly control the environmental geochemical behaviors of iron, sulfur and heavy metal elements. For purpose of revealing the coupling mechanism and environmental significance of RIS and reactive iron in coastal acid sulfate soils wetland, this study collected a sediment core with a depth of about 40 cm at the Qinjiang river estuary. The contents and distribution of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur (ES) and reactive iron (Fe(Ⅱ) and Fe(Ⅲ)) were investigated. The results show that Fe(Ⅲ) is the main reactive iron in the acid sulfate soil of Qinjiang river estuary, and Fe (Ⅱ) and Fe (Ⅲ) in active iron are easily interconverted in the environment. The lower the REDOX potential (Eh) and the higher the content of Organic Matter (OM), the more beneficial the reduction of Fe (Ⅲ) to Fe (Ⅱ). The reducing inorganic sulfur is mainly CRS, followed by AVS and a small amount of ES. In the diagenetic process, the reducing inorganic sulfur will convert to each other, and the process is mainly controlled by active iron and OM, but the limiting factors of reducing inorganic sulfur formation are the content and activity of organic matter. Higher organic matter and Fe (Ⅱ) are more likely to lead to enrichment of AVS, and higher Fe (Ⅲ) and Eh values are more conducive to the formation of ES.CRS is not only controlled by organic matter and active iron, but also affected by AVS conversion rate. The CRS/AVS ratio of most samples in the study area was low, indicating that AVS could not be effectively converted into CRS, and the activity and bioavailability of sulfide were high. Therefore, the introduction of exogenous organic matter and human disturbance should be minimized to avoid the release of H+ from reductive inorganic sulfur oxidation to form acid damage, resulting in the leaching of heavy metals adsorbed or co-precipitation on inorganic sulfur.
表1 沉积物中的活性铁、环境因子与RIS相关性分析Tab. 1 Correlation analysis of active iron and environmental factors and RIS in the sediment |
FeTR | Fe(Ⅱ) | Fe(Ⅲ) | OM | Eh | AVS | CRS | ES | RIS | pH | 含水率 | Cl- | SO42- | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FeTR | 1 | ||||||||||||
Fe(Ⅱ) | 0.643* | 1 | |||||||||||
Fe(Ⅲ) | 0.545* | -0.215 | 1 | ||||||||||
OM | 0.600* | 0.832** | -0.097 | 1 | |||||||||
Eh | 0.630* | 0.227 | 0.562* | 0.442 | 1 | ||||||||
AVS | 0.444 | 0.730** | -0.233 | 0.716** | -0.05 | 1 | |||||||
CRS | -0.383 | 0.01 | -0.372 | 0.111 | -0.116 | 0.168 | 1 | ||||||
ES | 0.271 | -0.153 | 0.742** | -0.05 | 0.556* | -0.199 | 0.197 | 1 | |||||
RIS | 0.044 | 0.463 | -0.328 | 0.587* | -0.006 | 0.684** | 0.801** | 0.093 | 1 | ||||
pH | -0.521 | -0.172 | -0.499 | -0.332 | -0.948** | 0.213 | 0.046 | -0.563* | 0.039 | 1 | |||
含水率 | 0.690** | 0.069 | 0.771** | 0.26 | 0.841** | -0.013 | -0.255 | 0.629* | -0.118 | -0.798** | 1 | ||
Cl- | 0.012 | -0.276 | 0.260 | -0.299 | 0.468 | -0.498 | -0.128 | 0.31 | -0.438 | -0.44 | 0.298 | 1 | |
SO42- | -0.345 | -0.664** | 0.294 | -0.766** | 0.009 | -0.797** | -0.118 | 0.288 | -0.621* | -0.059 | -0.015 | 0.775** | 1 |
注: * 在 0.05 级别(双尾)相关性显著; ** 在 0.01 级别(双尾)相关性显著。FeTR: 总活性铁; Fe(Ⅱ): 二价铁; Fe(Ⅲ): 三价铁; OM: 有机质; Eh: 氧化还原电位; AVS: 酸可挥发性硫; CRS: 黄铁矿硫; ES: 单质硫; RIS: 还原性无机硫; pH:酸碱度; Cl-: 氯离子; SO42-: 硫酸根离子 |
图5 研究区沉积物中黄铁矿化度(DOP, a)和硫化度(DOS, b)垂直分布图Fig. 5 Vertical distribution plots of DOP (a) and DOS (b) in the sediments in the study area |
表2 研究区与其他国内外研究区域中CRS/AVS、DOP与DOS对比Tab. 2 Comparison of CRS/AVS, DOP and DOS between the study area and other study areas at home and abroad |
地点 | CRS/AVS | DOP/% | DOS/% | 数据来源 |
---|---|---|---|---|
钦江河口 | 0.93~3.00 | 2.5~7.4 | 6.1~15.4 | 本研究 |
澳大利亚东海岸乔治湖 | — | 0.6~77.8 | 5.0~79.3 | Schoepfer等(2014) |
烟台夹河口 | 0.99~11.4 | 1~24 | 3~25 | 姜明等(2018) |
黄海胶州湾 | 0.28~5.39 | 10~36 | 20~103 | Zhu等(2012) |
墨西哥湾 | 1.25~10.38 | 56~95 | 63~266 | Morse等(2007) |
黑海 | — | 80~95 | 40~80 | Yücel等(2010) |
注: —表示无相关数据 |
[1] |
曹爱丽, 周桂平, 胡姝, 等, 2010. 崇明东滩湿地沉积物中还原无机硫的形态特征[J]. 复旦学报(自然科学版), 49(5): 612-617.
|
[2] |
丰卫华, 王志富, 张荣保, 等, 2016. 宁德海域表层沉积物氧化还原环境特征及其影响因素[J]. 海洋环境科学, 35(6): 882-887.
|
[3] |
国家环境保护总局, 2002. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社: 368-370.
北京:中国环境科学出版社: 368-370. THE STATE ENVIRONMENTAL PROTECTION ADMINISTRATION, 2002. Water and wastewater monitoring and analysis method[M]. Fourth Edition. Beijing: China Environmental Science Press: 368-370 (in Chinese with English abstract).
|
[4] |
黄巧义, 唐拴虎, 卢瑛, 等, 2014. 酸性硫酸盐土的形成、特性及其生态环境效应[J]. 植物营养与肥料学报, 20(6): 1534-1544.
|
[5] |
黄旭, 唐拴虎, 杨少海, 等, 2015. 酸性硫酸盐土壤改良对不同品种水稻生育性状的影响[J]. 中国土壤与肥料, (6): 48-56.
|
[6] |
姜明, 赵国强, 李兆冉, 等, 2018. 烟台夹河口外柱状沉积物还原性无机硫、活性铁的变化特征及其相互关系[J]. 海洋科学, 42(8): 90-97.
|
[7] |
吕仁燕, 朱茂旭, 李铁, 等, 2011. 东海陆架泥质沉积物中固相Fe形态及其对有机质、Fe、S成岩路径的制约意义[J]. 地球化学, 40(4): 363-371.
|
[8] |
钱宝, 刘凌, 肖潇, 2011. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 39(1): 34-38.
|
[9] |
施玉珍, 张际标, 李雪英, 等, 2012. 湛江湾沉积物中酸可挥发性硫和重金属含量分布及重金属生态风险评价[J]. 应用海洋学学报, 31(4): 466-471.
|
[10] |
孙启耀, 2016. 河口沉积物硫的地球化学特征及其与铁和磷的耦合机制初步研究[D]. 烟台: 中国科学院烟台海岸带研究所.
|
[11] |
唐罗忠, 生原喜久雄, 户田浩人, 等, 2005. 湿地林土壤的Fe2+, Eh及pH值的变化[J]. 生态学报, (1): 103-107.
|
[12] |
尹洪斌, 范成新, 丁士明, 等, 2008. 太湖梅梁湾与五里湖沉积物活性硫和重金属分布特征及相关性研究[J]. 环境科学, 29(7): 1791-1796.
|
[13] |
于雯泉, 钟少军, 蒲晓强, 等, 2009. 胶州湾李村河河口区沉积物有机碳、酸可挥发硫化物及重金属元素的环境响应[J]. 古地理学报, 11(3): 338-347.
|
[14] |
张伯虎, 陈沈良, 刘焱雄, 等, 2011. 广西钦州湾海域表层沉积物分异特征与规律[J]. 热带海洋学报, 30(4): 66-70.
|
[15] |
章家恩, 1999. 酸性硫酸盐土的酸害暴发机制及其环境影响[J]. 热带地理, 19(2): 137-141.
|
[16] |
张璐, 2014. 胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D]. 青岛: 中国海洋大学.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
/
〈 |
|
〉 |