体散射函数及衰减系数快速剖面仪的研发及应用*
*感谢中国科学院仪器设备功能开发技术创新项目的资助; 感谢中国科学院海南热带海洋生物实验站黄晖研究员、周伟华研究员和付兴胜助理工程师对本次研究数据的获取提供的支持和帮助; 感谢中国科学院海南热带海洋生物实验站组织的三亚湾生态环境调查冬季航次。
李彩(1977—), 女, 甘肃省白银市人, 研究员, 主要从事海洋光学技术的研究。email: |
Copy editor: 殷波
收稿日期: 2023-06-25
修回日期: 2023-08-27
网络出版日期: 2023-08-24
基金资助
广州市南沙区重点领域科技项目(2022ZD001)
国家自然科学基金项目(41976181)
国家自然科学基金项目(41976172)
国家自然科学基金项目(41976170)
国家自然科学基金项目(42276181)
热带海洋环境国家重点实验室自主研究项目(LTOZZ2003)
国家重点研发计划课题项目(2022FY100601)
Development and Application of the Multiangle Volume Scattering and Attenuation Meter (VSAM)*
Copy editor: YIN Bo
Received date: 2023-06-25
Revised date: 2023-08-27
Online published: 2023-08-24
Supported by
Science and Technology Planning Project of Guangzhou Nansha District Guangzhou City China(2022ZD001)
National Natural Science Foundation of China(41976181)
National Natural Science Foundation of China(41976172)
National Natural Science Foundation of China(41976170)
National Natural Science Foundation of China(42276181)
Open Project Program of the State Key Laboratory of Tropical Oceanography(LTOZZ2003)
National Key R&D Program of China(2022FY100601)
水体体散射函数(volume scattering function, VSF, )、吸收系数 及衰减系数 是海水固有光学特性的基础性参数, 基于上述参数可以进一步推算得到水体所有特征性光学特性参数, 进而为海洋初级生产力、全球碳循环等基础和前端领域研究以及水色遥感、水环境监测及灾害预警、水下光场分布、目标追踪、光伏发电等军民融合领域的应用和发展提供重要的数据支撑。受限于体散射函数的强方向性, 其测量技术难度大且发展不成熟。文章以高角度分辨率多角度体散射函数及衰减系数高频剖面测量为目标, 研发了可同步获取17个角度体散射函数、水体衰减系数、剖面深度及温度信息的快速剖面测量仪(volume scattering and attenuation meter, VSAM), 其测量频率最高可达20Hz, 体散射函数测量角度范围为10°~170°, 角度分辨率10°, 剖面最大工作深度200m。利用VSAM对三亚湾和崖州湾水体光学特性分布进行剖面调查研究: 整体上, 崖州湾和三亚湾水体体散射函数及衰减系数均存在较大的水平、垂直及角度(体散射函数)变化特征; 同一水层, 自西向东衰减及体散射函数呈递减趋势; 同一站位, 衰减及体散射函数随剖面深度呈递增趋势; 前向10°体散射函数最大, 后向120°体散射函数最小, 前后向体散射函数相差2个数量级甚至更高。结合同期获取的水体浊度和叶绿素浓度剖面调查结果发现, 浊度是崖州湾水体体散射函数及衰减系数显著高于三亚湾的主导贡献者, 且上述海域水体浊度与颗粒物散射 及衰减 具有很好的线性相关性。VSAM测得的衰减系数及后向体散射函数分别与Viper (Trios公司, 德国)及ECO-VSF3 (Seabird公司, 美国)测量结果在剖面分布上具有较好的一致性。
李彩 , 刘聪 , 张现清 , 陈飞 , 肖志会 , 杨泽明 , 郑媛宁 , 周雯 , 许占堂 . 体散射函数及衰减系数快速剖面仪的研发及应用*[J]. 热带海洋学报, 2024 , 43(2) : 1 -11 . DOI: 10.11978/YG2023002
The volume scattering function (VSF, ), the absorption coefficient , and attenuation coefficient are the basic parameters of the inherent optical properties of seawater, based on the above parameters, all the inherent and apparent characteristic parameters of the seawater can be further deduced, and the important information data for the basic and front-end research on the primary productivity of the ocean and the global carbon cycle, as well as the military-civilian integration fields application such as the development of the water color remote sensing, the water environment monitoring and disaster early warning, the underwater light field distribution, target tracking, and the photovoltaic power generation will be supported. Limited by the strong directionality of VSF, its measurement technology is difficult and immature. In this paper, with the goal of high-frequency profile measurement of high-angle resolution multi-angle VSF and attenuation coefficient of seawater, a multiangle volume scattering function and attenuation coefficient meter (VSAM) that can simultaneously measure 17 angular VSFs, the attenuation coefficient, the profile depth and temperature information has been described, the measurement angle range of VSF is 10° ~ 170° with the interval of 10°, while the theoretical measurement frequency and deepest profile depth are 20 Hz and 200 m, respectively. With VSAM, the distribution of optical parameters of Sanya Bay and Yazhou Bay has been investigated and studied, and on the whole, the VSFs and attenuation coefficient of Yazhou Bay and Sanya Bay have large changes in horizontal, vertical and angle (for VSFs). The minimum and maximum of VSFs in 120° and 10°, respectively, and the maximum is two or more orders of magnitude larger than the minimum. The attenuation and VSFs show a decreasing trend from west (the Yazhou Bay) to east (the Sanya Bay) in the same water layer and an increasing trend from surface to underwater deeper in the profile at the same station. Combined with the results of water turbidity and chlorophyll concentration profile results measured during the same period, it is found that turbidity is the dominant contribution of the VSFs and attenuation coefficient of the Yazhou Bay, and it also has a good linear correlation with and in these two bays. The attenuation coefficients and VSFs measured by VSAM are in good agreement with the attenuation coefficient measured by Viper (www.trios.de) and the VSFs by ECO-VSF3 (www.seabird.com) in the same stations and water layer during the same period.
图9 崖州湾和三亚湾沿岸表层1m处水体衰减系数(a)、体散射函数(b)、浊度(c)及叶绿素质量浓度(d)空间分布Fig. 9 Spatial distribution of , , turbidity, and Chla (1) in Yazhou Bay and Sanya Bay |
[1] |
曹文熙, 李彩, 柯天存, 等, 2003. 基于双光路原理的海水IOPs高光谱测量仪方案[J]. 光学技术, 29(2): 139-141, 145.
|
[2] |
李彩, 曹文熙, 柯天存, 等, 2013. 水体体散射函数测量技术研究进展[J]. 热带海洋学报, 32(5): 65-72.
|
[3] |
刘聪, 2022. 水体体散射函数测量仪定标方法研究及初步应用[D]. 广州: 中国科学院南海海洋研究所.
|
[4] |
刘聪, 李彩, 2023. 体散射函数测量技术定标方法研究进展[J]. 遥感学报, 27(2): 285-298.
|
[5] |
王万研, 杨克成, 罗曼, 等, 2018. 水中悬浮颗粒的三维体散射函数测量[J]. 光学学报, 38(3): 430-440.
|
[6] |
徐聪辉, 2019. 水体体散射函数测量仪数据采集系统的设计[D]. 广州: 中国科学院南海海洋研究所.
|
[7] |
徐聪辉, 李彩, 2019a. 广角水体体散射函数测量技术及其应用研究进展[J]. 遥感学报, 23(6): 1078-1090.
|
[8] |
徐聪辉, 李彩, 张振昭, 2019b. ADS1262多通道数据采集系统设计[J]. 中国测试, 45(9): 112-117.
|
[9] |
张现清, 李彩, 周雯, 等, 2023. 基于体散射函数及吸收系数的南海水体漫射衰减系数研究[J]. 热带海洋学报, 42(3): 86-95.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 |
|
〉 |