循环水养殖系统下藻鱼互作效应及对水质调控的研究
郭优优(1994—), 女, 硕士研究生, 研究方向为藻类资源开发与养殖环境生态修复。email: yyguo111@163.com |
Copy editor: 殷波 , YIN Bo
收稿日期: 2024-04-15
修回日期: 2024-06-10
网络出版日期: 2024-06-25
基金资助
国家重点研发计划项目(2022YFD2401303)
技术服务项目(B23315)
Algae-fish interactions and wastewater quality control in recirculating aquaculture systems
Copy editor: YIN Bo
Received date: 2024-04-15
Revised date: 2024-06-10
Online published: 2024-06-25
Supported by
National Key Research and Development Program of China(2022YFD2401303)
Technical Service(B23315)
郭优优 , 谢恩义 , 辛榕 , 林坤 , 廖佳炜 , 陈春丽 , 王慧慧 , 杨文成 , 崔建军 , 莫峰 , 温其交 . 循环水养殖系统下藻鱼互作效应及对水质调控的研究[J]. 热带海洋学报, 2025 , 44(2) : 147 -156 . DOI: 10.11978/2024086
This study investigated the impacts of algae-fish interactions on wastewater purification in a recirculating aquaculture system, with and without the high-temperature resistant Gracilaria spp. as the experimental alga. The effects of Gracilaria spp. on the quality of the system wastewater and the growth performance of the hybrid pearl gentian groupers (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) were examined. The results showed that the presence of Gracilaria spp.. 1) improved wastewater quality and reduced the concentrations of ammonia nitrogen, nitrite, and phosphate in the wastewater in the grouper culture bucket by 5.05%, 98.81%, and 69.26%, respectively, compared with the control group without Gracilaria spp., and 2) promoted the growth performance of the groupers, with their weight gain rate and survival rate in the experimental group increasing by 2.10- and 1.69-fold (to 67.37% and 96.43%), respectively, compared with the control group. In addition, the Gracilaria spp. grew rapidly in the experimental treatment. Their specific growth rate was more than 3%·d-1 and their wet weight was more than 1.5 times as much during the culture experiments. We also conducted a Granger causality test. Our results confirmed that the addition of Gracilaria spp. to a recirculating aquaculture system should reduce the ammonia nitrogen concentration and increase the biomass and survival rate of the groupers. The study showed that a recirculating aquaculture system not only enhanced the mutualistic relationship between algae and fish but also efficiently improved water quality, potentially leading to further development and application of multi-level integrated aquaculture models.
图1 循环养殖系统示意图1. 沙质底质; 2. 出水口过滤网; 3. 水速调节阀; 4. 防溢口; 5. 水泵。YA/YB为石斑鱼养殖桶; A1/B1为与YA/YB出水口相连的养殖水箱; A2/B2为与A1/B2相连的养殖水箱 Fig. 1 Schematic diagram of aquaculture recirculation system 1. Sandy substrate; 2. Outlet filter screen; 3. Water speed regulating valve; 4. Anti overflow port; 5. Water pump. YA/YB are grouper breeding buckets; A1/B1 is the aquaculture water tank connected to the YA/YB outlet; A2/B2 is the aquaculture water tank connected to A1/B2 |
图3 养殖试验期间珍珠龙胆石斑鱼质量(a)、增重率(b)和存活率(c)变化图具有相同字母的柱状图表示两组数据属于同一个同质子集, 表明这些组之间没有显著差异。带有“*”的柱状图表示组间平均值具有显著差异(p<0.05) Fig. 3 Variation of survival rate and growth performance in Pearl Gentian Grouper. (a) weight; (b) weight gain rate; (c) survival rate A bar chart with the same letters indicates that two sets of data belong to the same proton set, indicating that there is no significant difference between these groups. A bar chart with an asterisk (*) indicates a significant difference in the mean values between groups (p<0.05) |
图4 试验组江蓠的生长指标变化a. 湿重; b. 特定生长率; c. 增重率。具有相同字母的柱状图表示两组数据属于同一个同质子集, 表明这些组之间没有显著差异。带有“*”的柱状图表示组间平均值具有显著差异(p<0.05) Fig. 4 Variation of the growth indexes of Gracilaria spp.. (a) wet weight; (b) specific growth rate; (c) weight gain rate A bar chart with the same letters indicates that two sets of data belong to the same proton set, indicating that there is no significant difference between these groups. A bar chart with an asterisk (*) indicates a significant difference in the mean values between groups (p<0.05) |
图5 基于格兰杰因果检验的变量因果关系与显著性分析a. 箭头的方向表示变量之间的因果关系, 箭头从原因变量指向结果变量; b. 格兰杰因果检验的显著性 p 值。当 p<0.05 时, 左侧变量被认为是底部变量的原因 Fig. 5 Granger causality test-based analysis of variable causal relationships and significance. (a) The direction of the arrows indicates causal relationships between variables, with arrows pointing from the causal variable to the resultant variable. (b) The heatmap shows the significance p-values of the Granger causality test. When p < 0.05, the variable on the left is considered the cause of the variable at the bottom |
[1] |
陈素文, 陈利雄, 朱长波, 等, 2014. 环境因子对海萝藻体生长及成活的影响[J]. 南方水产科学, 10(3): 92-96.
|
[2] |
葛长字, 2006. 大型海藻在海水养殖系统中的生物净化作用[J]. 渔业现代化, (4): 11-13.
|
[3] |
郜晓峰, 刘炜, 钟逸云, 等, 2022. 不同温度对大叶藻生长与光合生理的影响[J]. 应用与环境生物学报, 28(1): 175-181.
|
[4] |
黄鹤忠, 梁建生, 张群英, 2013. 菊花江蓠 (Gracilaria lichenoides) 对N、P吸收效应及其细胞超微结构变化[J]. 海洋与湖沼, 44(1): 95-102.
|
[5] |
黄永健, 崔建军, 陈心怡, 等, 2023. 异枝江蓠对温度和光照强度的光合生理响应[J]. 南方水产科学, 19(4): 139-147.
|
[6] |
柯瑞林, 任黎华, 孟顺龙, 2023. 水产养殖尾水处理技术研究进展[J]. 中国农学通报, 39(29): 146-151.
|
[7] |
孔凡文, 才旭, 于淼, 2010. 格兰杰因果关系检验模型分析与应用[J]. 沈阳建筑大学学报(自然科学版), 26(2): 405-408.
|
[8] |
李华, 田道贺, 刘青松, 等, 2021. 长茎葡萄蕨藻在模拟工厂化循环水养殖环境中的脱氮研究[J]. 生态科学, 40(5): 59-68.
|
[9] |
李豫, 黄建盛, 陈有铭, 等, 2023. 低温胁迫对军曹鱼幼鱼鳃组织抗氧化能力、细胞凋亡和组织结构的影响[J]. 南方水产科学, 19(3): 68-77.
|
[10] |
李再亮, 申玉春, 刘丽, 等, 2014. 半叶马尾藻对N、P吸收速率的初步研究[J]. 广东海洋大学学报, 34(4): 9-13.
|
[11] |
李志凌, 王晓龙, 田相利, 等, 2018. 珍珠龙胆石斑鱼与不同海水植物工厂化原位混养的比较研究[J]. 海洋湖沼通报, 5: 118-124.
|
[12] |
廖秀睿, 李曦, 柳睿杰, 等, 2021. 曲褶刚毛藻在对虾养殖尾水无机氮盐净化中的应用[J]. 海南热带海洋学院学报, 28(2): 1-5.
|
[13] |
林向阳, 钟晨辉, 唐隆晨, 等, 2018. 海带对大黄鱼网箱养殖区水质的生物修复[J]. 渔业研究, 40(4): 279-285.
|
[14] |
刘义豪, 刘相全, 徐英江, 等, 2020. 光照和盐度对江蓠在N、P持续加富条件下生长和吸收的影响[J]. 海洋湖沼通报, (5): 88-94.
|
[15] |
尚志刚, 沈晓阳, 李蒙蒙, 等, 2020. 基于格兰杰因果的效应性连接分析方法综述[J]. 郑州大学学报(工学版), 41(3): 1-7, 13.
|
[16] |
孙晓飞, 花勃, 2017. 室内工厂化循环水立体养殖锯缘青蟹技术[J]. 中国水产, (5): 80-82. (in Chinese).
|
[17] |
汤坤贤, 焦念志, 游秀萍, 等, 2005. 菊花心江蓠在网箱养殖区的生物修复作用[J]. 中国水产科学, 12(2): 156-161.
|
[18] |
王成强, 相智巍, 黄炳山, 等, 2022. 3种耐盐植物对水产养殖废水净化效果[J]. 广东海洋大学学报, 42(3): 25-32.
|
[19] |
王峰, 雷霁霖, 高淳仁, 等, 2013. 国内外工厂化循环水养殖模式水质处理研究进展[J]. 中国工程科学, 15(10): 16-23, 32.
|
[20] |
王丽娜, 申玉春, 叶宁, 等, 2017. 养殖密度对珍珠龙胆石斑鱼行为活动和生长性能的影响[J]. 南方农业学报, 48(5): 920-925.
|
[21] |
王晓艳, 李宝山, 王际英, 等, 2021. 江蓠和四角蛤蜊对珍珠龙胆石斑鱼封闭养殖水体水质的净化作用[J]. 烟台大学学报(自然科学与工程版), 34(2): 186-193.
|
[22] |
温珊珊, 2008. 真江蓠对养殖水体的生态修复研究[D]. 上海: 上海海洋大学.
|
[23] |
温珊珊, 张寒野, 何文辉, 等, 2008. 真江蓠对氨氮去除效率与吸收动力学研究[J]. 水产学报, 32(5): 794-803.
|
[24] |
翁祖兴, 2023. 赤点石斑鱼工厂化循环水养殖试验[J]. 科学养鱼, (9): 70-72.
|
[25] |
吴超元, 李纫芷, 林光恒, 等, 1994. 细基江蓠繁枝变型生长适宜环境条件的研究[J]. 海洋与湖沼, 25(1): 60-66.
|
[26] |
吴雯艳, 邵一涵, 叶雯雯, 等, 2021. 工厂化循环水养殖对虾研究进展[J]. 水产养殖, 42(7): 18-22.
|
[27] |
徐永健, 陆开宏, 韦玮, 2007a. 大型海藻江蓠对养殖池塘水质污染修复的研究[J]. 中国生态农业学报, 15(5): 156-159.
|
[28] |
徐永健, 韦玮, 钱鲁闽, 2007b. 菊花江蓠对陆基围隔高密度对虾养殖的污染净化与水质调控[J]. 中国水产科学, 14(3): 430-435.
|
[29] |
徐皓, 张建华, 丁建乐, 等, 2010. 国内外渔业装备与工程技术研究进展综述[J]. 渔业现代化, 37(2): 1-8.
|
[30] |
杨凤, 马燕武, 张东升, 等, 2003. 孔石莼和臭氧对养鲍水质的调控作用比较[J]. 大连水产学院学报, 18(2): 79-83.
|
[31] |
杨宇峰, 费修绠, 2003. 大型海藻对富营养化海水养殖区生物修复的研究与展望[J]. 青岛海洋大学学报, 33(1): 53-57.
|
[32] |
岳维忠, 黄小平, 黄良民, 等, 2004. 大型藻类净化养殖水体的初步研究[J]. 海洋环境科学, 23(1): 13-15, 40.
|
[33] |
张胜花, 常军军, 孙珮石, 2013. 水体藻类磷代谢及藻体磷矿化研究进展[J]. 生态环境学报, 22(7): 1250-1254.
|
[34] |
张文香, 王志敏, 张卫国, 2005. 海水鱼类工厂化养殖的现状与发展趋势[J]. 水产科学, 24(5): 50-52.
|
[35] |
赵崇宇, 蔡岩, 朱力, 等, 2023. 大型海藻对方斑东风螺养殖尾水净化效果比较[J]. 海南大学学报(自然科学版), 41(4): 359-368.
|
[36] |
郑辉, 许文超, 2016. 4种海藻在南美白对虾养殖水体中的生态作用[J]. 河南农业科学, 45(5): 144-147.
|
[37] |
郑辉, 2018. 大型海藻对水产养殖废水中无机氮和活性磷酸盐吸收作用研究[J]. 科技通报, 38(4): 258-261.
|
[38] |
钟志海, 黄中坚, 陈伟洲, 2014. 不同环境因子对异枝江蓠的生长及生化组分的影响[J]. 渔业科学进展, 35(3): 98-104.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
/
〈 |
|
〉 |