基于波谱仪观测和再分析数据的热带气旋海浪有效波高数据重构研究*
*感谢国家海洋卫星应用中心(https://osdds.nsoas.org.cn/)、欧洲中期天气预报中心(https://cds.climate.copernicus.eu)和美国国家飓风中心(https://www.nhc.noaa.gov/)提供数据支撑。
任宇恒(2002—), 男, 本科, 主要研究方向为海洋微波遥感。email: ryhopq@163.com |
Copy editor: 殷波 , YIN Bo
收稿日期: 2024-05-28
修回日期: 2024-07-05
网络出版日期: 2024-07-10
基金资助
国家自然科学基金项目(42306196)
山东省自然科学基金项目(ZR2022QF069)
Data reconstruction of tropical cyclone significant wave height based on ocean wave spectrometer observations and reanalysis data*
Copy editor: YIN Bo
Received date: 2024-05-28
Revised date: 2024-07-05
Online published: 2024-07-10
Supported by
National Natural Science Foundation of China(42306196)
Natural Science Foundation of Shandong Province(ZR2022QF069)
有效波高数据是研究热带气旋海浪预测方法和反演技术的前提, 文章利用中法海洋卫星(China-France oceanography satellite, CFOSAT)波谱仪(surface waves investigation and monitoring, SWIM)高精度有效波高观测数据, 校正欧洲中期天气预报中心(European Center for Medium-range Weather Forecasts, ECMWF)第5代再分析资料(the fifth generation ECMWF reanalysis, ERA5)在高海况下低估有效波高的误差, 为构建高精度、大样本量的热带气旋海浪有效波高数据集提供了一种可靠方法。首先, 由于ERA5与SWIM数据存在时空分辨率差异, 文章利用经纬度变换和反距离加权法空间插值对两种数据进行时空匹配。然后, 通过数据对比得到了ERA5误差随SWIM有效波高增大而增大的相关关系, 进而使用线性回归方法构建了从ERA5到SWIM的有效波高重构方程。最后, 使用两处美国国家数据浮标中心(National Data Buoy Center, NDBC)浮标数据对重构方程进行了验证, 对于5m以上海浪, ERA5有效波高数据的均方根误差分别从重构前的1.65m和1.08m降低到重构后的1.18m和0.71m, 证明了重构方程的有效性。
任宇恒 , 高源 , 王运华 , 孙建 . 基于波谱仪观测和再分析数据的热带气旋海浪有效波高数据重构研究*[J]. 热带海洋学报, 2025 , 44(2) : 48 -55 . DOI: 10.11978/2024111
Data of significant wave heights (SWHs) is the basis of the investigations of tropical cyclone (TC) wave forecasting and retrieval technology. Based on the high-precision SWHs observed by the wave spectrometer of Surface Waves Investigation and Monitoring (SWIM) on board the China-France oceanography satellite (CFOSAT), this paper corrected the underestimation error of the SWHs under high sea state from the fifth generation reanalysis (ERA5) of European center for medium-range weather forecasts (ECMWF), providing a reliable support for the construction of a TC SWHs dataset with high accuracy and large sample quantity. Firstly, due to the temporal and spatial resolution differences between ERA5 and SWIM data, this paper utilized the latitude and longitude transformation and the inverse distance weighting method of spatial interpolation to match the two data spatially and temporally. Then, the correlation relationship that the ERA5 error increases with the increase of SWIM SWHs was obtained through data comparison. Based on this relationship, a reconstruction equation from ERA5 to SWIM was constructed using the linear regression method. Finally, the reconstruction equation was validated using the data from two (USA) National Data Buoy Center (NDBC) buoys. The results showed that for waves higher than 5 m, the Root Mean Square Error (RMSE) of the ERA5 SWHs reduced from 1.65 m and 1.08 m before the reconstruction to 1.18 m and 0.71 m after it, respectively, proving the effectiveness of the reconstruction equation.
Key words: wave spectrometer; ERA5; significant wave height; tropical cyclone
图5 ERA5有效波高重构前(a)、后(b)与NDBC 41044浮标2021年数据对比Fig. 5 Comparison of buoy 41044 in 2021 and ERA5 SWHs before (a) and after (b) reconstruction |
表1 ERA5有效波高重构前后与41044浮标2021年数据的误差对比Tab. 1 Error comparison of ERA5 SWHs before and after reconstruction, based on buoy 41044 in 2021 |
验证参数 | 重构前 | 重构后 |
---|---|---|
均方根误差/m | 0.24 | 0.23 |
平均绝对误差/m | 0.18 | 0.18 |
相关系数 | 0.94 | 0.94 |
图6 ERA5有效波高重构前(a)、后(b)与NDBC 41048浮标2023年数据对比Fig. 6 Comparison of buoy 41048 in 2023 and ERA5 SWHs before (a) and after (b) reconstruction |
表2 ERA5有效波高重构前后与41048浮标2023年数据的误差对比Tab. 2 Error comparison of ERA5 SWHs before and after reconstruction, based on buoy 41048 in 2023 |
验证参数 | 重构前 | 重构后 |
---|---|---|
均方根误差/m | 0.32 | 0.31 |
平均绝对误差/m | 0.26 | 0.20 |
相关系数 | 0.95 | 0.96 |
图7 5m以上ERA5有效波高重构前(a)、后(b)与NDBC 41044浮标2021年数据对比Fig. 7 Comparison of SWHs above 5 m before (a) and after (b) reconstruction between ERA5 and buoy 41044 in 2021 |
表3 5m以上ERA5有效波高重构前后与41044浮标2021年数据的误差对比Tab. 3 Error comparison of ERA5 SWHs above 5 m before and after reconstruction, based on buoy 41044 in 2021 |
验证参数 | 重构前 | 重构后 |
---|---|---|
均方根误差/m | 1.65 | 1.18 |
平均绝对误差/m | 1.43 | 0.89 |
相关系数 | 0.72 | 0.91 |
图8 5m以上ERA5有效波高重构前(a)、后(b)与NDBC 41048浮标2023年数据对比Fig. 8 Comparison of SWHs above 5 m before (a) and after (b) reconstruction between ERA5 and buoy 41048 in 2023 |
表4 5m以上ERA5有效波高重构前后与41048浮标2023年数据的误差对比Tab. 4 Error comparison of ERA5 SWHs above 5 m before and after reconstruction, based on buoy 41048 in 2023 |
验证参数 | 重构前 | 重构后 |
---|---|---|
均方根误差/m | 1.08 | 0.71 |
平均绝对误差/m | 0.94 | 0.54 |
相关系数 | 0.78 | 0.90 |
[1] |
陈小燕, 杨劲松, 黄韦艮, 等, 2009. 多源卫星高度计有效波高数据融合方法研究[J]. 海洋学报, 31(4): 51-57.
|
[2] |
储小青, 2011. 海浪波谱仪海浪遥感方法及应用基础研究[D]. 青岛: 中国科学院研究生院(海洋研究所).
|
[3] |
李爱莲, 刘泽, 洪新, 等, 2021. 台风条件下ERA5再分析数据对中国近海适用性评估[J]. 海洋科学, 45(10): 71-80.
|
[4] |
徐广珺, 杨劲松, 徐圆, 等, 2013. “海洋二号”有效波高数据在多源卫星高度计数据融合中的应用[J]. 海洋学报, 35(4): 208-213.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
/
〈 |
|
〉 |