人工生态礁体群对非平整岛礁孤立波水动力特性影响的试验研究
王超(1998—), 男, 山东省德州市人, 硕士研究生, 主要从事波浪水动力研究。email: 2455251260@qq.com |
Copy editor: 殷波 , YIN Bo
收稿日期: 2024-05-13
修回日期: 2024-07-16
网络出版日期: 2024-08-12
基金资助
国家重点研发计划课题项目(2022YFC3103601)
国家自然科学基金重点项目(51839002)
湖南省自然科学基金项目(2021JJ20043)
Influences of artificial fish reef on wave hydrodynamics of solitary wave on an uneven fringing reef
Copy editor: YIN Bo
Received date: 2024-05-13
Revised date: 2024-07-16
Online published: 2024-08-12
Supported by
National Key Research and Development Program of China(2022YFC3103601)
National Natural Science Foundation of China(51839002)
Natural Science Foundation of Hunan Province, China(2021JJ20043)
珊瑚礁特殊的地貌结构会导致大部分的入射波浪在其礁缘处破碎, 从而有效降低礁坪上的波浪强度, 起到保护海岸区域的作用。然而, 岛礁上日益增多的人类活动, 例如吹填珊瑚砂和岸防建设等, 不但对岛礁原本脆弱的生态系统构成威胁, 并且对岛礁复杂波浪演变特性产生显著影响。目前, 岛礁建设面临促进岛礁生态修复和改善岛礁防浪抗浪特性的双重需要。文章基于物理模型试验, 系统研究了人工生态礁体群存在时岛礁孤立波水动力的演变特性, 并且分析了波高、水深、礁体开孔直径等因素对孤立波水动力特性的影响。试验结果表明, 人工生态礁体群的存在会对岛礁孤立波的传播演变特性产生显著影响。入射波浪与人工生态礁体之间存在复杂的相互作用, 礁体的存在会降低入射波浪的反射强度。除此之外, 人工礁体内部复杂的涡流场会消耗更多的入射波能量, 导致入射波浪在礁坪上的透射系数降低, 更好地起到保护海岸的作用。
王超 , 屈科 , 王旭 , 高榕泽 , 王傲宇 . 人工生态礁体群对非平整岛礁孤立波水动力特性影响的试验研究[J]. 热带海洋学报, 2025 , 44(2) : 30 -38 . DOI: 10.11978/2024101
The special geomorphological structure of coral reefs causes most of the incident waves to break at the reef edge, thus effectively reducing the intensity of waves on the reef apron and protecting the coastal area. However, the increasing human activities on the reefs, such as coral sand blowing and shore defense construction, not only threaten the fragile ecosystems of the reefs, but also significantly affect the complex wave evolution characteristics of the reefs. Nowadays, the construction of islands and reefs is facing the dual needs of promoting the ecological restoration of islands and reefs and improving the characteristics of wave protection and resistance of islands and reefs. Based on a physical model test, this paper systematically investigates the evolution of solitary wave hydrodynamic characteristics of island reefs with the existence of artificial ecological reef groups and analyzes the influence of wave height, water depth, reef body opening diameter and other factors. The experimental results show that the existence of artificial ecological reefs will have a significant impact on the propagation and evolution characteristics of island-type solitary waves. There is a complex interaction between the incident wave and the artificial reef, and the presence of the reef enhances the reflective strength of the incident wave. In addition, the complex vortex field inside the artificial reef body will consume more incident wave energy, resulting in a lower transmission coefficient of the incident wave on the reef pads, which better protects the coast.
表1 试验工况表Tab. 1 Test conditions |
工况编号 | 入射波高/m | 礁坪水深/m | 壁面开孔率 | 布置排数 | 工况编号 | 入射波高/m | 礁坪水深/m | 壁面开孔率 | 布置排数 |
---|---|---|---|---|---|---|---|---|---|
A1 | 0.02 | 0.050 | \ | \ | C5 | 0.10 | 0.050 | 0.2 | 6 |
A2 | 0.04 | 0.050 | \ | \ | D1 | 0.06 | 0 | 0.2 | 6 |
A3 | 0.06 | 0.050 | \ | \ | D2 | 0.06 | 0.025 | 0.2 | 6 |
A4 | 0.08 | 0.050 | \ | \ | D3 | 0.06 | 0.075 | 0.2 | 6 |
A5 | 0.10 | 0.050 | \ | \ | E1 | 0.06 | 0.050 | 0.1 | 6 |
B1 | 0.06 | 0 | \ | \ | E2 | 0.06 | 0.050 | 0.3 | 6 |
B2 | 0.06 | 0.025 | \ | \ | F1 | 0.06 | 0.050 | 0.2 | 1 |
B3 | 0.06 | 0.075 | \ | \ | F2 | 0.06 | 0.050 | 0.2 | 2 |
C1 | 0.02 | 0.050 | 0.2 | 6 | F3 | 0.06 | 0.050 | 0.2 | 3 |
C2 | 0.04 | 0.050 | 0.2 | 6 | F4 | 0.06 | 0.050 | 0.2 | 4 |
C3 | 0.06 | 0.050 | 0.2 | 6 | F5 | 0.06 | 0.050 | 0.2 | 5 |
C4 | 0.08 | 0.050 | 0.2 | 6 |
注: A1—A5表示无人工生态礁体群条件下不同入射波高的工况; B1—B3表示无人工生态礁体群条件下不同礁坪水深的工况; C1—C5表示有人工生态礁体群条件下不同入射波高的工况; D1—D3表示有人工生态礁体群条件下不同礁坪水深的工况; E1—E2表示有人工生态礁体群条件下不同壁面开孔率的工况; F1—F5表示有人工生态礁体群条件下不同布置排数的工况。“\”表示无人工生态礁体群的珊瑚岛礁地形 |
图2 不同入射波高(H0)下选测点局部波高的比较a. G7礁缘处有无人工礁体情况下的波高对比; b. G9第一礁坪上有无人工礁体情况下的波高对比; c. G11礁坪台阶处有无人工礁体情况下的波高对比; d. G14第二礁坪上有无人工礁体情况下的波高对比 Fig. 2 Comparisons of distributions of wave height along fringing reef under different incident wave height (H0) |
图4 不同第二礁坪淹没水深(Hr)下选测点局部波高的比较a. G7礁缘处有无人工礁体情况下的波高对比; b. G9第一礁坪上有无人工礁体情况下的波高对比; c. G11礁坪台阶处有无人工礁体情况下的波高对比; d. G14第二礁坪上有无人工礁体情况下的波高对比 Fig. 4 Comparisons of distributions of wave height along fringing reef under different submergence depth of the second reef flat (hr) |
图6 不同壁面开孔率(n)下所选测点局部波高的比较a. G7礁缘处有无人工礁体情况下的波高对比; b. G9第一礁坪上有无人工礁体情况下的波高对比; c. G11礁坪台阶处有无人工礁体情况下的波高对比; d. G14第二礁坪上有无人工礁体情况下的波高对比 Fig. 6 Comparisons of distributions of wave height along fringing reef under different wall porosity (n) |
图8 不同布置排数(R)下所选测点局部波高的比较a. G7礁缘处有无人工礁体情况下的波高对比; b. G9第一礁坪上有无人工礁体情况下的波高对比; c. G11礁坪台阶处有无人工礁体情况下的波高对比; d. G14第二礁坪上有无人工礁体情况下的波高对比 Fig. 8 Comparisons of distributions of wave height along fringing reef under different arrange the number of rows (R) |
[1] |
李俊杰, 屈科, 王旭, 2023. 采掘坑对孤立波岸礁水动力特性影响的三维数值模拟研究[J]. 热带海洋学报, 42(6): 42-51.
|
[2] |
龙丽娟, 杨芳芳, 韦章良, 2019. 珊瑚礁生态系统修复研究进展[J]. 热带海洋学报, 38(6): 1-8.
|
[3] |
梅弢, 高峰, 2013. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 34(1): 13-18.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 |
|
〉 |