基于深度学习的SAR图像海洋涡旋自动检测模型
1.南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044;
2.青岛海洋科技中心区域海洋动力学与数值模拟功能实验室,青岛 山东 266200;
3.自然资源部遥感导航一体化应用工程技术创新中心,江苏 南京 210044;
4.江苏省协同精密导航定位与智能应用工程研究中心,江苏 南京 210044;
5.南京信息工程大学电子与信息工程学院, 江苏 南京 210044)
收稿日期: 2024-12-29
修回日期: 2025-02-18
录用日期: 2025-02-26
网络出版日期: 2025-02-26
基金资助
国家重点研发计划资助(2022YFC3104900/2022YFC3104905)、国家自然科学基金(42176180)
Deep Learning-Based Automatic Detection Model for Ocean Eddy in SAR Images
1.School of Remote Sensing& Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Laboratory for Regional Oceanography and Numerical Modeling, Qingdao Marine Science and Technology Center, 266200, Qingdao, Shandong Province, China;
3. Innovation Center for Integrated Remote Sensing and Navigation Applications Engineering Technology, Ministry of Natural Resources, Nanjing, Jiangsu 210044, China;
4. Jiangsu Collaborative Innovation Center for Precision Navigation and Intelligent Application Engineering, Nanjing, Jiangsu 210044, China ;
5. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)
Received date: 2024-12-29
Revised date: 2025-02-18
Accepted date: 2025-02-26
Online published: 2025-02-26
Supported by
National
Key R&D Program of China (2022YFC3104900/2022YFC3104905), National Natural
Science Foundation of China (42176180)
刘太龙 , 谢涛 , 李建 , 王超 , 张学红 . 基于深度学习的SAR图像海洋涡旋自动检测模型[J]. 热带海洋学报, 0 : 1 . DOI: 10.11978/2024242
Key words: Oceanic eddies; Synthetic Aperture Radar; Deep learning; YOLO; Object Detection
/
〈 |
|
〉 |