台风“暹芭”登陆后北折路径成因及诊断分析
周云霞(1973—), 女, 广西壮族自治区南宁市人, 学士, 主要从事灾害性天气预报和研究工作。email: 13878131128@163.com |
Copy editor: 孙翠慈
收稿日期: 2024-12-23
修回日期: 2025-01-25
网络出版日期: 2025-03-03
基金资助
广西自然科学基金项目(2022GXNSFBA035565)
Diagnostic analysis and causes of the northward turning path of typhoon Chaba after landfall
Received date: 2024-12-23
Revised date: 2025-01-25
Online published: 2025-03-03
Supported by
Natural Science Foundation of Guangxi(2022GXNSFBA035565)
周云霞 , 翟丽萍 , 覃皓 , 黄晴 , 祁丽燕 . 台风“暹芭”登陆后北折路径成因及诊断分析[J]. 热带海洋学报, 2025 , 44(4) : 67 -76 . DOI: 10.11978/2024239
Typhoon Chaba, the fourth typhoon of 2022, exhibited an abnormal northward turn after making landfall in Guangxi on the night of July 2, resulting in significant deviations in wind and rainfall forecasts and posing major challenges to typhoon defense efforts. This study employs a comprehensive approach utilizing multi-source meteorological observation data from the upper-air, surface, and satellite platforms, along with ERA5 (the fifth generation of European Centre for Medium-range Weather Forecasts) reanalysis data of the global climate. Through synoptic diagnostic analysis and quantitative diagnosis using the potential vorticity tendency equation, we investigate the causes of the typhoon's abnormal northward turn. The results indicate that: (1) The northward turn of typhoon Chaba resulted from the combined effects of changes in the deep-layer steering flow due to large-scale circulation pattern shifts and changes in the typhoon's internal asymmetric structure; (2) The deep-layer steering flow played a dominant role in the track deflection. Key factors driving the steering flow changes included the westward extension and intensification of the Western Pacific Subtropical High, the interaction between the southwest flow ahead of the upper-level westerly trough and the northwest side of the South Asian High, and the typhoon's northward outflow. Meanwhile, changes in positive vorticity advection served as important indicators of the typhoon's northward turn; (3) Typhoon Chaba displayed distinct asymmetric structural characteristics, with cumulonimbus convection triggered by its internal vertical motion significantly influencing the northward turn. Changes in the typhoon's cloud pattern also provided valuable indications of its directional shift; (4) Quantitative diagnosis using the potential vorticity tendency equation further revealed that during its movement over the South China Sea, the typhoon was primarily controlled by the steering flow formed by the external large-scale circulation. The abrupt northward turn after landfall resulted from the combined effects of this steering flow and vertical motion induced by the typhoon's asymmetric structure. Additionally, typhoon Chaba exhibited a consistent movement tendency towards the center of positive potential vorticity tendency.
图7 2022年7月1日20时(a)、2日20时(b)、3日02时(c)位涡倾向(PVT)垂直积分和1日20时(d)、2日20时(e)、3日02时(f)水平平流项(HA)垂直积分及1日20时(g)、2日20时(h)、3日02:00(i)垂直平流项(VA)垂直积分红、黑色标记分别为当前、6h后“暹芭”台风中心位置 Fig. 7 Vertically integrated potential vorticity tendency (a-c), horizontal advection term (d-f), and vertical advection (g-i) term at 20:00 BST 1 July 2022 (a, d, g), 20:00 BST 2 July 2022 (b, e, h), and 02:00 BST 3 July 2022 (c, f, i) |
[1] |
毕鑫鑫, 陈光华, 周伟灿, 2018. 超强台风“天鹅”(2015)路径突变过程机理研究[J]. 大气科学, 42(1): 227-238.
|
[2] |
陈联寿, 徐祥德, 罗哲贤, 等, 2002. 热带气旋动力学引论[M]. 北京: 气象出版社: 222-227.
|
[3] |
陈蓉, 谭锐志, 林元弼, 1996. 热带气旋内部非对称积云对流对其移动的影响[J]. 大气科学, 20(2): 195-201.
|
[4] |
陈渭民, 2005. 卫星气象学[M]. 北京: 气象出版社: 343-344 (in Chinese).
|
[5] |
《广西天气预报技术和方法》编写组, 2012. 广西天气预报技术和方法[M]. 北京: 气象出版社: 208-209 (in Chinese).
|
[6] |
韩鼎妍, 李敏, 胡睿, 等, 2024. 秋季登陆广东热带气旋特征变化及机制分析[J]. 热带海洋学报, 43(1): 64-78.
|
[7] |
姜丽萍, 夏冠聪, 尤红, 等, 2008. “珍珠” 台风强度及路径异常的分析[J]. 台湾海峡, 27(1): 124-128.
|
[8] |
金荣花, 高拴柱, 顾华, 等, 2006. 近31年登陆北上台风特征及其成因分析[J]. 气象, 32(7): 33-39.
|
[9] |
李瑞芬, 袁月, 郭卫华, 等, 2021. 2018年台风“摩羯” 和“温比亚” 路径的影响因子分析[J]. 气象科技, 49(3): 427-436.
|
[10] |
李泽椿, 张玲, 钱奇峰, 等, 2020. 中央气象台台风预报业务的发展及思考[J]. 大气科学学报, 43(1): 10-19.
|
[11] |
刘爱鸣, 林毅, 吴幸毓, 2010. 台湾岛及邻近区域热带气旋异常路径特征分析[J]. 气象, 36(9): 29-35.
|
[12] |
刘开源, 戴竹君, 姜有山, 等, 2024. 台风“烟花” 缓慢移动的机理研究: 远距离双台风相互作用[J]. 气象科学, 44(2): 308-316.
|
[13] |
钱传海, 端义宏, 麻素红, 等, 2012. 我国台风业务现状及其关键技术[J]. 气象科技进展, 2(5): 36-43.
|
[14] |
史得道, 易笑园, 刘彬贤, 2014. 台风“达维”不对称结构特征分析[J]. 气象与环境学报, 30(3): 10-17.
|
[15] |
束艾青, 许冬梅, 李泓, 等, 2022. FY-3D卫星MWHS-2辐射率资料直接同化对台风“米娜”预报的影响[J]. 热带海洋学报, 41(5): 17-28.
|
[16] |
孙泽铭, 韩树宗, 王明杰, 等, 2024. 不同路径台风对中国近海海温的影响特征统计分析[J]. 热带海洋学报, 43(5): 17-31.
|
[17] |
王斌,
|
[18] |
王海平, 2023. 高空冷涡对台风烟花(2106)路径的影响[J]. 应用气象学报, 34(5): 586-597.
|
[19] |
王敏, 尹义星, 陈晓旸, 等, 2020. 异常北折台风“洛坦”与异常西折台风“奥玛”路径的对比及预报[J]. 热带海洋学报, 39(1): 53-65.
|
[20] |
王新伟, 罗哲贤, 马革兰, 等, 2015. 热带气旋Meranti(2010)异常路径的成因分析[J]. 大气科学学报, 38(1): 37-45.
|
[21] |
温典, 李英, 魏娜, 等, 2019. 高空冷涡影响台风Meranti(1010)北翘路径的集合预报分析[J]. 大气科学, 43(4): 730-740.
|
[22] |
文永仁, 戴高菊, 龚月婷, 等, 2017. 我国台风路径突变研究进展[J]. 气象科技, 45(6): 1027-1035.
|
[23] |
吴胜蓝, 漆梁波, 邹兰军, 2023. 台风灿都路径预报中的非绝热加热因子分析[J]. 气象, 49(7): 805-818.
|
[24] |
许映龙, 张玲, 高拴柱, 2010. 我国台风预报业务的现状及思考[J]. 气象, 36(7): 43-49.
|
[25] |
袁敏, 平凡, 李国平, 2018. 位涡倾向在Muifa台风路径转折中的应用[J]. 大气科学, 42(2): 281-291.
|
[26] |
于慧珍, 马艳, 韩旭卿, 等, 2022. 台风“摩羯” 路径转折预报和诊断分析[J]. 干旱气象, 40(6): 1014-1023.
|
[27] |
周玉淑, 冉令坤, 2010. 平流涡度方程及其在2006年Bilis台风分析中的应用[J]. 物理学报, 59(2): 1366-1377.
|
[28] |
|
[29] |
|
[30] |
|
/
〈 |
|
〉 |