三亚湾夏季原核生物的微型浮游动物摄食率与病毒裂解率*
*感谢匿名审稿专家提出的宝贵修改意见和建议。
|
李春山(1998—), 男, 河南省信阳市人, 硕士研究生, 从事海洋微生物生态学研究。email: lichunshan22@mails.ucas.ac.cn。 |
|
张建东(1988—), 男, 山东省潍坊市人, 高级工程师, 从事海洋微生物生态学研究。email: zhangjiandong@scsio.ac.cn。 |
Copy editor: 殷波
收稿日期: 2025-01-07
修回日期: 2025-03-05
网络出版日期: 2025-03-18
基金资助
国家自然科学基金项目(42176116)
国家自然科学基金项目(42306134)
国家自然科学基金项目(41576126)
国家科技基础资源调查专项(2023FY100803)
广东省自然科学基金项目(2017A030306020)
中国科学院南海海洋研究所“南海新星”项目(NHXX2019ST0101)
Microzooplankton grazing rates and viral lysis rates on prokaryotes in summer Sanya Bay*
Received date: 2025-01-07
Revised date: 2025-03-05
Online published: 2025-03-18
Supported by
National Natural Science Foundation of China(42176116)
National Natural Science Foundation of China(42306134)
National Natural Science Foundation of China(41576126)
Science & Technology Fundamental Resources Investigation Program(2023FY100803)
Natural Science Foundation of Guangdong Province(2017A030306020)
Rising Star Foundation of the South China Sea Institute of Oceanology(NHXX2019ST0101)
关键词: 微型浮游生物; 原核生物; 原核生物碳流向; 病毒裂解作用; 微型浮游动物摄食作用
李春山 , 张建东 , 龙超 , 龙丽娟 , 黄思军 . 三亚湾夏季原核生物的微型浮游动物摄食率与病毒裂解率*[J]. 热带海洋学报, 2025 , 44(5) : 97 -107 . DOI: 10.11978/2025006
Studies on the temporal dynamics of carbon flux on prokaryotic organisms are limited, particularly in the South China Sea. During a month-long study in Sanya Bay, we examined the temporal dynamics of zooplankton grazing rate and viral lysis rate on prokaryotes. Our study revealed that prokaryotic growth rate (µ) surpassed the combined rates of viral lysis (v) and microzooplankton grazing (g), averaging (2.69 ± 0.66) d-1 (1.61 ~ 3.87 d-1). The viral lysis rate averaged (0.77 ± 0.34) d-1 (0.31 ~ 1.21 d-1), while the microzooplankton grazing rate averaged (0.83 ± 0.58) d-1 (0.12 ~ 1.88 d-1). The carbon flux caused by viral lysis (Cv) and zooplankton grazing (Cg) on prokaryotes was nearly equal, each approximating 106 fg·mL-1. Negative correlations were observed between viral lysis rates and microzooplankton grazing rates, as well as between the percentage of prokaryotic cells lysed by viruses (Pv) and the percentage of prokaryotic cells grazed by microzooplankton (Pg). Conversely, a significant positive correlation was noted between viral lysis-caused carbon flux and microzooplankton grazing-caused carbon flux. Overall, viral lysis and microzooplankton grazing on prokaryotes exhibited substantial variability over the study period, with both processes contributing equally to prokaryotic mortality, highlighting their significance in prokaryotic carbon flux. Elucidating the carbon flow pathways on prokaryotes through time-series analysis in the South China Sea provides new data on marine productivity structure and carbon cycling mechanisms.
Key words: picophytoplankton; prokaryotes; carbon flux; viral lysis; microzooplankton grazing
图1 三亚湾采样期间的环境参数变化情况Fig. 1 Variation of environmental parameters in Sanya Bay over the one-month sampling period |
表1 三亚湾采样期内的环境因子与生物参数统计Tab. 1 Statistics of environmental and biological parameters in Sanya Bay over the one-month sampling period |
| 参数 | 范围 | 平均值(X±SD) | 参数 | 范围 | 平均值(X±SD) |
|---|---|---|---|---|---|
| 温度/℃ | 26.10~29.40 | 28.33±1.16 | Syn/(×104cells·L-1) | 0.33~7.38 | 2.98±2.47 |
| 盐度/‰ | 31.97~33.73 | 32.99±0.43 | PC_Syn/(×102cells·L-1) | 1.0~15.00 | 6.38±4.39 |
| DO/(mg·L-1) | 4.26~6.30 | 5.63±0.50 | PE_Syn/(×104cells·L-1) | 0.31~7.33 | 2.92±2.46 |
| Chl a/(μg·L-1) | 4.26~6.30 | 0.39±0.17 | Vir/(×107VLPs·mL-1) | 0.11~2.82 | 1.00±0.78 |
| | 0.96~3.88 | 1.83±0.82 | μ /d-1 | 1.61~3.87 | 2.69±0.66 |
| | 0.09~0.26 | 0.15±0.04 | v/d-1 | 0.31~1.21 | 0.77±0.34 |
| | 1.51~4.23 | 2.84±0.70 | g/d-1 | 0.12~1.88 | 0.83±0.58 |
| | 0.05~0.30 | 0.12±0.06 | Pv/% | 6.18~70.31 | 50.86±18.04 |
| | 2.55~7.00 | 3.88±1.33 | Pg/% | 0.29~84.70 | 49.69±26.53 |
| Prok/(×105cells·L-1)) | 2.33~14.00 | 5.79±4.07 | Cv/(×106fg·mL-1) | 0.18~7.75 | 2.66±2.11 |
| PicoEuk/(×103cells·L-1) | 0.01~4.20 | 1.82±1.46 | Cg/(×106fg·mL-1) | 0.01~9.51 | 2.81±2.61 |
注: DO: 溶解氧; Chl a: 叶绿素a; Prok: 原核生物; PicoEuk: 微型真核生物; Syn: 聚球藻; PC_Syn: 富含藻蓝蛋白的聚球藻; PE_Syn: 富含藻红蛋白的聚球藻; Vir: 病毒; VLP: 病毒样颗粒; μ: 原核生物生长率; v: 病毒裂解率; g: 微型浮游动物摄食率; Pv: 病毒裂解百分比; Pg: 微型浮游动物摄食百分比; Cv: 病毒裂解碳量; Cg: 微型浮游动物摄食碳量 |
图2 三亚湾采样期间的微微型浮游生物群丰度变化a. 微微型浮游生物及病毒丰度的日变化趋势; b. 微微型浮游生物及病毒丰度的分布特征。Vir: 病毒; Prok: 原核生物; Syn: 聚球藻; PicoEuk: 微型真核生物; PE_Syn: 富含藻红蛋白的聚球藻; PC_Syn: 富含藻蓝蛋白的聚球藻。图b中的数字为变异系数值, 用于评估参数的波动范围 Fig. 2 Fluctuations of picoplankton abundances in Sanya Bay over the one-month sampling period. (a) Diurnal variation in the abundances of picoplankton and viruses; (b) abundance distribution and variation across picoplankton and virus groups. Vir: virioplankton; Prok: prokaryotes; Syn: Synechococcus; PicoEuk: picoeukaryotes; PC_Syn: phycocyanin-rich Synechococcus; PE_Syn: phycoerythrin-rich Synechococcus; The numerical values in panel b represent the coefficient of variation, used to assess the variability in the abundance of each group |
图3 三亚湾在一个月内的原核生物生长率、病毒裂解作用及微型浮游动物摄食作用日变化a. 病毒裂解率、微型浮游动物摄食率和原核生物生长率日变化折线图; b. 病毒裂解率、微型浮游动物摄食率和原核生物生长率日变化箱线图; c. 病毒裂解百分比和微型浮游动物摄食百分比日变化折线图; d. 病毒裂解百分比和微型浮游动物摄食百分比日变化箱线图; e. 病毒裂解碳量和微型浮游动物摄食碳量日变化折线图; f. 病毒裂解碳量和微型浮游动物摄食碳量日变化箱线图。μ: 原核生物生长率; v: 病毒裂解率; g: 微型浮游动物摄食率; Pv: 病毒裂解百分比; Pg: 微型浮游动物摄食百分比; Cv: 病毒裂解碳量; Cg: 微型浮游动物摄食碳量。图b、d、f中的数字表示变异系数值, 用于评估参数的波动范围 Fig. 3 Diurnal variations in prokaryotic growth rates, viral lysis, and microzooplankton grazing in Sanya Bay over the one-month sampling period. (a) Line graph showing the diurnal variation in viral lysis rate, microzooplankton grazing rate, and prokaryotic growth rate; (b) boxplot showing the diurnal variation in viral lysis rate, microzooplankton grazing rate, and prokaryotic growth rate; (c) line graph showing the diurnal variation in the percentage of cells lysed by viruses and grazed by microzooplankton; (d) boxplot showing the diurnal variation in the percentage of cells lysed by viruses and grazed by microzooplankton; (e) line graph showing the diurnal variation in carbon flux caused by viral lysis and microzooplankton grazing; (f) boxplot showing the diurnal variation in carbon flux caused by viral lysis and microzooplankton grazing. μ: prokaryotic growth rate; v: viral lysis rate; g: microzooplankton grazing rate; Pv: percentage of cells lysed by viruses; Pg: percentage of cells grazed by microzooplankton; Cv: carbon flux caused by viral lysis; Cg: carbon flux caused by microzooplankton grazing. The values shown in panels b, d, and f indicate the coefficient of variation, used to reflect the extent of variability in each parameter |
图4 环境因子对浮游生物群落差异、原核生物生长率、病毒裂解作用及微型浮游动物摄食作用差异的贡献a. 各响应变量被环境因子解释的变异比例; b. 环境因子与各响应变量之间的 Pearson 相关性及重要性。PC_Syn: 富含藻蓝蛋白的聚球藻; PE_Syn: 富含藻红蛋白的聚球藻; Syn: 聚球藻; PicoEuk: 微型真核生物; Prok: 原核生物; Vir: 病毒; v: 病毒裂解率; g: 微型浮游动物摄食率; μ: 原核生物生长率; Pv: 病毒裂解百分比; Pg: 微型浮游动物摄食百分比; Cv: 病毒裂解碳量; Cg: 微型浮游动物摄食碳量 Fig. 4 Contributions of environmental factors to the differences in planktonic community, prokaryotic growth rates, viral lysis, and microzooplankton grazing. (a) Proportion of variance in each response variable explained by environmental factors; (b) Pearson correlations (color gradient) and variable importance (circle size) between environmental factors and response variables |
图5 浮游生物群落、原核生物生长率、病毒裂解作用及微型浮游动物摄食作用的相关性分析PC_Syn: 富含藻蓝蛋白的聚球藻; PE_Syn: 富含藻红蛋白的聚球藻; Syn: 聚球藻; PicoEuk: 微型真核生物; Prok: 原核生物; Vir: 病毒; v: 病毒裂解率; g: 微型浮游动物摄食率; μ: 原核生物生长率; Pv: 病毒裂解百分比; Pg: 微型浮游动物摄食百分比; Cv: 病毒裂解碳量; Cg: 微型浮游动物摄食碳量。*: P<0.05 Fig. 5 Correlation analysis of planktonic community, prokaryotic growth rates, viral lysis, and microzooplankton grazing |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
/
| 〈 |
|
〉 |