三份南海岛礁珊瑚砂样品中可培养细菌多样性
李存(1995—), 男, 山东省枣庄市人, 硕士研究生, 从事海洋微生物研究。email: |
收稿日期: 2021-04-15
修回日期: 2021-05-12
网络出版日期: 2021-05-12
基金资助
中国科学院战略性先导科技专项(XDA19060301)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0402)
广东省“珠江人才计划”本土创新科研团队项目(2019BT02Y262)
Diversity of cultured bacteria isolated from three coral reef sediments in South China Sea
Received date: 2021-04-15
Revised date: 2021-05-12
Online published: 2021-05-12
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19060301)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0402)
Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2019BT02Y262)
岛礁珊瑚砂环境中存在着大量未被培养和利用的微生物资源, 微生物多样性研究是了解微生物生态功能、开发和利用微生物资源的基础。文章采用多种寡营养培养基选择性分离南海岛礁珊瑚砂中的可培养细菌, 共获得纯培养细菌菌株349株, 通过16S rRNA基因序列分析, 发现它们隶属于4门(Actinobacteria、Proteobacteria、Firmicutes和Bacteroidetes)、6纲、26目、43科、73属、134种, 可培养细菌的优势类群为放线菌门, 占所有分离菌株数量的60%; 而且还发现18个16S rRNA 基因序列相似性低于97%的潜在新种。本研究使用改良优化的寡营养培养基进行分离, 较好地显示出样品中微生物的群落组成, 且获得了大量潜在的稀有新物种资源。研究结果表明, 岛礁珊瑚砂样品的可培养细菌资源十分丰富、细菌群落所涉及的生态功能完整、潜在新种比例较高, 为后期岛礁微生物资源挖掘打下了良好的基础, 也为后期开发应用积累了丰富且稀有的菌种资源。
李存 , 崔林青 , 杨红强 , 龙丽娟 , 田新朋 . 三份南海岛礁珊瑚砂样品中可培养细菌多样性[J]. 热带海洋学报, 2022 , 41(2) : 149 -158 . DOI: 10.11978/2021050
There are a large number of uncultured microbial resources in coral reef environments. Microbial diversity research will help us understand their ecological functions, and also help develop and utilize microbial resources. In this study, a total of 349 pure bacterial strains were obtained by selective isolation media with multiple oligotrophic components, from three samples collected from three coral reef islands in the South China Sea. Based on 16S rRNA gene sequence analysis, we found the cultivable bacteria belong to four phyla of Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes; and they spread into six class, 26 orders, 43 families, 73 genera, and 134 species. There are 18 potential new taxa with 16S rRNA gene sequence similarities less than 97%. The dominant group is Actinobacteria, which accounts for 60% of all isolates. In this study, the improved and optimized oligotrophic media were used, which showed better isolation results including the composition of the microbial community and rare or new taxa in every sample. The results showed that the cultivable microbial resources are rich and diverse in coral reef island environments of the South China Sea, and the microbial community has comprehensive functions for material and energy metabolism; and the proportion is higher to obtain potential new taxa. This research has laid a good foundation for the methods to mine microbial resources in coral reef islands; it also accumulated abundant and rare microbial resources for the deep development and application in the future.
表1 不同培养基的类型及其成分Tab 1 Components of selective isolation media used in this study |
培养基名称 | 培养基成分/(g·L-1) |
---|---|
5% 2216 | 蛋白胨5.0, 酵母浸粉1.0, 柠檬酸铁0.1, NaCl 19.45, MgCl2 5.98, Na2SO4 3.24, CaCl2 1.8, KCl 0.55, Na2CO3 0.16, KBr 0.08, SrCl2 0.034, H3BO3 0.022, Na2O·SiO2 0.004, NaF 0.0024, NH4NO3 0.0016, Na2HPO4 0.008, 稀释20倍, 琼脂15. 0 |
5% AIA | 酪蛋白酸钠2.0, 天冬酰胺0.1, 丙酸钠4.0, K3PO4 0.5, MgSO4 0.1, FeSO4 0.001, 沸水浴1min后加入甘油5.0, 稀释20倍, 琼脂15. 0 |
5% R2A | 胰蛋白胨0.25, 酸水解酪蛋白0.5, 酵母浸粉0.5, 可溶性淀粉0.5, K2HPO4 0.3, MgSO4 0.1, 丙酮酸钠0.3, 蛋白胨0.25, 葡萄糖0.5, 稀释20倍, 琼脂15. 0 |
SN | NaNO3 0.75, K2HPO4 0.0159, EDTA二钠0.0056, Na2CO3 0.0104, VitaminB12 0.001(过滤除菌), 1×10-6微量盐(乙酸6.25, 柠檬酸铁铵6.0, MnCl2·4H2O 1.4, Na2MoO4·2H2O 0.39, Co(NO3)2·6H2O 0.025, ZnSO3·7H2O 0.222, 单独灭菌), 琼脂15. 0 |
10%菌液琼脂 | 离心收集菌株Gaiella occulta F2-233T的发酵液100mL, 过滤除菌, 加入900mL纯水, 琼脂15. 0 |
图1 分离获得的纯培养细菌在各分类等级中的分布情况a. 在不同门级、纲级、目级水平下细菌类群比例; b. 在不同属水平下细菌类群比例(标注了菌株中丰度前25的属) Fig. 1 Distribution of isolated pure culture strains in each classification grade. (a) Proportion of pure culture strains at different phylum, class and order levels, and (b) proportion of pure culture strains in the top 25 genera |
表2 3份珊瑚砂样品中细菌群落多样性指数Tab. 2 Diversity index of pure cultured strains isolated from three coral reef samples |
样品名称 | Shannon指数 | Simpson指数 | Invsimpson指数 | Chao1指数 | ACE指数 |
---|---|---|---|---|---|
Y11 | 2.39 | 0.85 | 6.78 | 53.00 | 42.54 |
BK-S | 3.83 | 0.95 | 20.40 | 182.67 | 259.60 |
BS2-S | 3.81 | 0.97 | 30.07 | 169.11 | 176.52 |
表3 潜在新菌种去重复信息表Tab. 3 Potential new taxa information after removing the duplication |
菌种编号 | 合并菌株数 | 最相似菌种 | 16S RNA序列相似性 | 新分类单元 |
---|---|---|---|---|
SCSIO 63424 | 1 | Arboricoccus pini | 89.88 | 潜在新属 |
SCSIO 63409 | 3 | Inquilinus limosus | 92.80 | 潜在新属 |
SCSIO 63602 | 1 | Nocardioides mesophilus | 93.64 | 潜在新属 |
SCSIO 63346 | 1 | Brevibacterium ammoniilyticum | 94.61 | 潜在新属 |
SCSIO 63385 | 1 | Gordonia terrae | 94.74 | 潜在新属 |
SCSIO 63263 | 3 | Brevibacterium casei | 95.07 | 潜在新属 |
SCSIO 63650 | 1 | Brachybacterium paraconglomeratum | 95.66 | 潜在新属 |
SCSIO 63659 | 6 | Nocardioides iriomotensis | 96.00 | 潜在新种 |
SCSIO 63265 | 2 | Haoranjiania flava | 96.19 | 潜在新种 |
SCSIO 63649 | 1 | Prauserella aidingensis | 96.34 | 潜在新种 |
SCSIO 63671 | 1 | Mesorhizobium oceanicum | 96.45 | 潜在新种 |
SCSIO 63658 | 1 | Prauserella rugosa | 96.56 | 潜在新种 |
SCSIO 63505 | 1 | Cohnella cellulosilytica | 96.58 | 潜在新种 |
SCSIO 63329 | 1 | Bacillus dafuensis | 96.71 | 潜在新种 |
SCSIO 63500 | 1 | Microbacterium oxydans | 96.72 | 潜在新种 |
SCSIO 63633 | 1 | Maricaulis virginensis | 96.77 | 潜在新种 |
SCSIO 68054 | 1 | Oceanobacillus iheyensis | 97.01 | 潜在新种 |
SCSIO 63591 | 1 | Sphingomonas aestuarii | 97.02 | 潜在新种 |
图5 不同培养基分离得到的潜在新种的系统发育树Fig. 5 Phylogenetic tree of potential new taxa obtained from different media |
图6 不同潜在新种在2216E培养基上培养14天后的菌落平板a. SCSIO 63409 (Inquilinus limosus); b. SCSIO 63263 (Brevibacterium casei); c. SCSIO 63671 (Mesorhizobium oceanicum); d. SCSIO 63659 (Nocardioides iriomotensis); e. SCSIO 63385 (Gordonia terrae); f. SCSIO 63505 (Cohnella cellulosilytica); g. SCSIO 63658 (Prauserella rugose); h. SCSIO 68054 (Oceanobacillus iheyensis) Fig. 6 Pure culture morphology of potential new taxa on 2216E medium after incubation for 14 days. (a) SCSIO 63409 (Inquilinus limosus); (b) SCSIO 63263 (Brevibacterium casei); (c) SCSIO 63671 (Mesorhizobium oceanicum); (d) SCSIO 63659 (Nocardioides iriomotensis); (e) SCSIO 63385 (Gordonia terrae); (f) SCSIO 63505 (Cohnella cellulosilytica); (g) SCSIO 63658 (Prauserella rugose); (h) SCSIO 68054 (Oceanobacillus iheyensis) |
[1] |
韩敏敏, 李蜜, 刘昕明, 等, 2020. Khai岛和Pathiu岛珊瑚礁沉积物细菌多样性及细菌粗提物延缓秀丽隐杆线虫衰老活性研究[J]. 热带海洋学报, 39(5): 19-29.
|
[2] |
何媛秋, 李存, 陈柔雯, 等, 2020. 不同培养条件对海洋沉积环境细菌的选择性分离[J]. 生物资源, 42(5): 540-548.
|
[3] |
龙丽娟, 杨芳芳, 韦章良, 2019. 珊瑚礁生态系统修复研究进展[J]. 热带海洋学报, 38(6): 1-8.
|
[4] |
孙创, 王金燕, 张钰琳, 等, 2021. 利用改良培养基探究西太平洋海水可培养细菌多样性[J]. 微生物学报, 61(4): 845-861.
|
[5] |
熊盈盈, 莫祯妮, 邱树毅, 等, 2021. 未培养环境微生物培养方法的研究进展[J]. 微生物学通报, 48(5): 1765-1779.
|
[6] |
周进, 晋慧, 蔡中华, 2014. 微生物在珊瑚礁生态系统中的作用与功能[J]. 应用生态学报, 25(3): 919-930.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
/
〈 |
|
〉 |