基于证据理论的风暴潮灾害损失评估
孙丰霖(1992—), 男, 山东淄博人, 博士研究生, 从事海洋灾害损失评估研究。email: |
Copy editor: 姚衍桃
收稿日期: 2021-03-29
修回日期: 2021-05-13
网络出版日期: 2021-05-24
Disaster loss assessment of storm surge based on Dempster-Shafer theory of evidence
Copy editor: YAO Yantao
Received date: 2021-03-29
Revised date: 2021-05-13
Online published: 2021-05-24
本文提出了一种基于Dempster-Shafer证据理论的风暴潮灾害损失评估方法。鉴于风暴潮致灾过程中的不确定性, 选择合适的具有代表性指标(包括最大风暴潮增水、最大有效波高和防灾减灾能力)产生灾害损失评估的证据, 并根据所选指标和风暴潮直接经济损失之间的相关性大小确定证据权重, 最后采用改进的Murphy证据融合算法进行证据融合, 从而判断灾害损失等级。通过实证分析发现, 本文所提出的方法在判断风暴潮灾害损失等级上的正确率达到93.1%, 优于朴素贝叶斯、支持向量机、神经网络和决策树等常用方法, 同时本文方法计算简便, 且随着训练集样本量的增加, 损失评估结果可进一步精细化。
孙丰霖 . 基于证据理论的风暴潮灾害损失评估[J]. 热带海洋学报, 2022 , 41(1) : 75 -81 . DOI: 10.11978/2021037
A disaster loss assessment method based on the Dempster-Shafer theory of evidence for storm surge is proposed in this paper. Because of uncertainty of storm surge in the disaster process, we select representative indicators (maximum height of storm surge, significant wave height, disaster prevention and reduction ability) to produce several pieces of evidence. The weight of evidence is calculated by using correlation between indicator and direct economic loss of storm surge disaster. A modified Murphy method is used to fuse evidence from different sources to judge the disaster loss level. An example is used to show that the classification accuracy of the method used in this paper can reach 93.1%, which is better than some existing methods, such as the Naive Bayes, Support Vector Machine, Neural Network, and Decision Tree methods. In addition, the method is simple in computation, and the results of disaster loss assessment can be more detailed with increasing training samples.
表1 样本数据及留一法样本测试结果Tab. 1 Sample data and results of the leave-one-out method |
风暴潮编号 | 防灾减灾能力 | 最大增水高度/m | 最大有效波高/m | 实际灾级 | 证据1 | 证据2 | 证据3 | 本文方法预测灾级 |
---|---|---|---|---|---|---|---|---|
201909 | 1.00 | 0.63 | 0.81 | 1 | 1 | 2 | 1 | 1 |
201822 | 0.97 | 0.44 | 0.55 | 1 | 1 | 2 | 1 | 1 |
201911 | 1.00 | 0.89 | 0.80 | 1 | 1 | 2 | 1 | 1 |
201509 | 0.85 | 0.63 | 0.57 | 1 | 1 | 2 | 1 | 1 |
201205 | 0.72 | 1.69 | 0.62 | 1 | 1 | 3 | 1 | 1 |
201601 | 0.88 | 1.50 | 0.89 | 1 | 1 | 3 | 1 | 1 |
201407 | 0.80 | 1.89 | 1.06 | 1 | 1 | 3 | 2 | 1 |
201006 | 0.60 | 0.91 | 0.69 | 1 | 2 | 2 | 1 | 1 |
201011 | 0.60 | 1.84 | 0.94 | 1 | 2 | 3 | 1 | 1 |
201111 | 0.66 | 0.56 | 0.76 | 1 | 1 | 2 | 1 | 1 |
200108 | 0.37 | 1.96 | 1.00 | 1 | 3 | 3 | 2 | 3 |
201617 | 0.88 | 1.59 | 0.99 | 1 | 1 | 3 | 2 | 1 |
201308 | 0.77 | 0.58 | 0.63 | 1 | 1 | 2 | 1 | 1 |
201323 | 0.77 | 0.76 | 1.23 | 2 | 1 | 2 | 2 | 2 |
201312 | 0.77 | 1.64 | 1.41 | 2 | 1 | 3 | 2 | 2 |
199504 | 0.30 | 0.69 | 1.00 | 2 | 3 | 2 | 2 | 2 |
200808 | 0.52 | 1.34 | 1.05 | 2 | 2 | 2 | 2 | 2 |
200010 | 0.35 | 1.82 | 0.90 | 2 | 3 | 3 | 1 | 3 |
199417 | 0.29 | 0.42 | 1.05 | 2 | 3 | 2 | 2 | 2 |
200908 | 0.55 | 0.90 | 1.32 | 2 | 2 | 2 | 2 | 2 |
201013 | 0.60 | 1.33 | 1.02 | 2 | 2 | 2 | 2 | 2 |
200216 | 0.38 | 1.30 | 1.20 | 3 | 3 | 2 | 2 | 3 |
199012 | 0.26 | 2.92 | 0.18 | 3 | 3 | 3 | 1 | 3 |
200513 | 0.43 | 1.74 | 0.83 | 3 | 3 | 3 | 1 | 3 |
199914 | 0.34 | 1.40 | 0.97 | 3 | 3 | 2 | 2 | 3 |
200102 | 0.37 | 2.76 | 1.22 | 3 | 3 | 3 | 2 | 3 |
199607 | 0.31 | 1.49 | 0.89 | 3 | 3 | 3 | 1 | 3 |
200604 | 0.45 | 1.78 | 1.14 | 3 | 3 | 3 | 2 | 3 |
200608 | 0.45 | 2.36 | 1.26 | 3 | 3 | 3 | 2 | 3 |
注: 阴影代表实际灾级与本文方法预测灾级不符的样本 |
表2 风暴潮灾害灾级识别结果Tab. 2 Results of disaster loss level for storm surge |
灾级 | 本文方法 | DS融合 | Murphy方法 | |||
---|---|---|---|---|---|---|
正确数 | 错误数 | 总数 | 正确率 | |||
一级 | 12 | 1 | 13 | 92.3% | 77% | 77% |
二级 | 7 | 1 | 8 | 87.5% | 88% | 88% |
三级 | 8 | 0 | 8 | 100.0% | 88% | 88% |
总体 | 27 | 2 | 29 | 93.1% | 83% | 83% |
表3 多种方法的结果比较Tab. 3 Comparison of results of five methods |
灾级 | 本文方法 | 朴素贝叶斯 | 支持向量机 | 神经网络 | 决策树 |
---|---|---|---|---|---|
一级 | 92.3% | 92.3% | 92.3% | 84.6% | 92.3% |
二级 | 87.5% | 87.5% | 50.0% | 62.5% | 0.0% |
三级 | 100.0% | 62.5% | 75.0% | 62.5% | 100.0% |
总体 | 93.1% | 82.8% | 75.9% | 72.4% | 69.0% |
[1] |
纪燕新, 熊艺媛, 麻荣永, 2007. 风暴潮灾害损失评估的模糊综合方法[J]. 广西水利水电, (2): 16-19, 28.
|
[2] |
江斯琦, 刘强, 2020. 基于改进神经网络及地理信息系统空间分析的风暴潮经济损失评估[J]. 科学技术与工程, 20(22): 9243-9247.
|
[3] |
康兵义, 李娅, 邓勇, 等, 2012. 基于区间数的基本概率指派生成方法及应用[J]. 电子学报, 40(6): 1092-1096.
|
[4] |
李超, 2006. 基于物元分析的我国洪灾损失综合评估[J]. 统计教育, (3): 44-46. (in Chinese)
|
[5] |
罗金炎, 徐飞, 李燕, 等, 2020. 福建省台风灾害损失分布分析[J]. 沈阳师范大学学报(自然科学版), 38(5): 417-421.
|
[6] |
石先武, 刘钦政, 王宇星, 2015. 风暴潮灾害等级划分标准及适用性分析[J]. 自然灾害学报, 24(3): 161-168.
|
[7] |
隋意, 石洪源, 钟超, 等, 2020. 我国台风风暴潮灾害研究[J]. 海洋湖沼通报, (3): 39-44.
|
[8] |
王志强, 陈思宇, 吕雪锋, 等, 2015. 风暴潮灾害受灾人口与直接经济损失评估方法研究进展[J]. 北京师范大学学报(自然科学版), 51(3): 274-279.
|
[9] |
谢丽, 张振克, 2010. 近20年中国沿海风暴潮强度、时空分布与灾害损失[J]. 海洋通报, 29(6): 690-696.
|
[10] |
许启望, 谭树东, 1998. 风暴潮灾害经济损失评估方法研究[J]. 海洋通报, 17(1): 1-12.
|
[11] |
叶雯, 刘美南, 陈晓宏, 2004. 感知器算法在台风风暴潮灾情等级评估中的应用[J]. 中山大学学报(自然科学版), 43(2): 117-120.
|
[12] |
赵领娣, 边春鹏, 2012. 风暴潮灾害综合损失等级划分标准的研究[J]. 中国渔业经济, 30(3): 42-49.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
/
〈 |
|
〉 |