一种温度相关的HY-2A散射计地球物理模型函数
陈克海(1979—), 男, 广东省汕头市人, 博士, 主要从事测绘遥感和微波散射计研究。email: |
收稿日期: 2021-03-30
修回日期: 2021-06-05
网络出版日期: 2021-06-05
基金资助
国家自然科学基金(41876204)
国家自然科学基金(41476152)
广东省科技创新战略专项资金(pdjh2020b0929)
广东工贸职业技术学院科研课题(2021-ZK-10)
An SST dependent geophysical model function for HY-2A scatterometer
Received date: 2021-03-30
Revised date: 2021-06-05
Online published: 2021-06-05
Supported by
National Natural Science Foundation of China(41876204)
National Natural Science Foundation of China(41476152)
Guangdong Province Science and Technology Innovation Strategy Special Fund(pdjh2020b0929)
Scientific Project of Guangdong Polytechnic of Industry and Commerce(2021-ZK-10)
利用散射计测量海面后向散射系数, 并通过地球物理模型函数(geophysical model function, GMF)反演得到海面风场。目前散射计风场反演所采用的GMF一般只考虑雷达极化方式、雷达入射角、风速和相对风向对海面后向散射系数的影响, 而相关研究表明海表温度(sea surface temperature, SST)对Ku波段散射计风场反演具有不可忽略的影响。文章利用海洋二号A卫星散射计(Haiyang-2A Scatterometer, HY2A-SCAT)后向散射系数观测值、欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF )再分析风矢量和SST数据, 采用人工神经网络方法, 建立起一种SST相关的GMF (TNGMF)。对TNGMF进行分析后发现, 海面后向散射系数随着SST的增加而增加, 并且其增加幅度与雷达极化方式、风速有关。为了对比, 文章使用相同数据集和相同方法建立了不包含SST的GMF (NGMF), 将美国国家航天航空局散射计-2 (National Aeronautics and Space Administration Scatterometer-2, NSCAT2) GMF、TNGMF和NGMF分别用于HY2A-SCAT风场反演实验。试验结果表明, 采用NSCAT2 GMF、NGMF反演得到的风速在低温时系统性偏小, 在高温时系统性偏大; 而TNGMF可较好地纠正SST对风速偏差均值的影响, 从而提高反演风场质量。
陈克海 , 解学通 , 张金兰 , 郑艳 . 一种温度相关的HY-2A散射计地球物理模型函数[J]. 热带海洋学报, 2022 , 41(2) : 90 -102 . DOI: 10.11978/2021038
Scatterometers measure the normalized radar cross-section (NRCS) from the sea surface, which is then used to retrieve the wind vector over the sea surface using the geophysical model function (GMF). The GMFs adopted by the wind retrieval of scatterometers generally consider the influence of the radar polarization, radar incident angle, wind speed, and relative direction, but research showed that sea-surface temperature (SST) has a non negligible impact on the wind retrieval of scatterometers in the Ku band. In this study, we use Haiyang-2A scatterometer (HY2A-SCAT) L2A data, European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis wind and SST data to build an SST-dependent GMF (TNGMF) using the artificial neural network. Using the TNGMF, we find that the NRCS increases with SST, and its range affected by SST is related to radar polarization and wind speed. In contrast, we use the same dataset and the same method to build another GMF without considering SST (NGMF); we then use NSCAT2 (NASA scatterometer-2) GMF, NGMF and TNGMF in the wind retrieval of HY2A-SCAT and find that NSCAT2 and NGMF wind speeds are systemically lower at low SST, and systemically higher at high SST. However, the TNGMF can well adjust the wind speed deviation affected by SST to improve the quality of retrieved wind.
图3 包含海表温度的神经网络模型拓扑结构输入部分: p表示极化方式, v表示风速, sinχ和cosχ表示相对风向χ的正弦值和余弦值 SST表示海表温度; 输出σ0表示后向散射系数 Fig. 3 Topological architecture of neural network geophysical model with SST input. The input: p represents polarization, v represents wind speed, sinχ and cosχ respectively represent the sine and cosine of relative wind direction, and SST represents sea surface temperature. The output of σ0 represents the normalized radar cross-section (NRCS) from the sea surface |
图5 HY-2A散射计包含海表温度的地球物理模型函数a. HH极化; b. VV极化。图中各曲线簇对应同一风速, 从下到上各曲线簇对应于4, 6, 8, 10, 12, 14 m·s-1 Fig. 5 SST-dependent GMF for HY-2A scatterometer. (a) HH polarization, and (b) VV polarization. Each cluster of curves in the figure is correspondent to a certain speed, from 4 to 14 m·s-1 by an interval of 2 m·s-1 |
图6 后向散射系数均值随海表温度的变化曲线a. HH极化; b. VV极化。图中散点和实线分别为评估数据集计算和TNGMF计算得到的后向散射系数均值 Fig. 6 Mean of normalized radar cross-section varying with SST. (a) HH polarization, and (b) VV polarization. Dots and lines represent the mean of normalized radar cross-section from estimated data and TNGMF, respectively |
[1] |
陈坤堂, 董晓龙, 徐星欧, 等, 2017. 微波散射计反演海面风场的神经网络方法研究[J]. 遥感技术与应用, 32(4): 683-690.
|
[2] |
李燕初, 孙瀛, 林明森, 等, 1999. 用圆中数滤波器排除卫星散射计风场反演中的风向模糊[J]. 台湾海峡, 18(1): 42-48.
|
[3] |
林明森, 宋新改, 彭海龙, 等, 2006. 散射计资料的风场神经网络反演算法研究[J]. 国土资源遥感, (2): 8-11.
|
[4] |
王婷, 江文辉, 肖南峰, 2011. 基于改进BP神经网络的数字识别[J]. 电子设计工程, 19(3): 108-112.
|
[5] |
解学通, 方裕, 陈晓翔, 等, 2005. 基于最大似然估计的海面风场反演算法研究[J]. 地理与地理信息科学, 21(1): 30-33.
|
[6] |
解学通, 陈克海, 郭丽青, 等, 2007. 包含温度因子的海水地球物理模型函数建模研究[J]. 热带海洋学报, 26(6): 14-20.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
/
〈 | 〉 |