收稿日期: 2009-10-30
修回日期: 2010-01-05
网络出版日期: 2010-05-24
基金资助
“908”专项(GD908-01-01, GD908-02-02); 中国科学院知识创新工程重要方向性项目(KZCXZ-YW-Q07)
Bioaccumulation of organochlorine pesticides in organisms and sediments in the western coastal waters of Guangdong province
Received date: 2009-10-30
Revised date: 2010-01-05
Online published: 2010-05-24
Supported by
“908”专项(GD908-01-01, GD908-02-02); 中国科学院知识创新工程重要方向性项目(KZCXZ-YW-Q07)
2007年11月在粤西海域采集鱼、虾和螺类等生物样品及表层沉积物样品, 探讨生物体和沉积物中滴滴涕(DDTs)和六六六(HCHs)累积水平和各组分的组成规律。调查发现, 沉积物中HCHs和DDTs的总含量分别是4.77ng•g-和9.06ng•g-1, 沉积物中γ-HCH未检出, 且δ-HCH和β-HCH所占比例较大, 表明粤西沿岸海区近期无新的HCHs输入。沉积物中(DDE+DDD)/T-DDT=0.97≈1, 表明粤西沿岸海区基本上没有新的DDT的输入。生物体内HCHs和DDTs的含量分别为0.84—14.90ng•g-1和0.60—18.40ng•g-1, 其中天竺鲷Apogon cyanosoma和日本对虾Penaeus japonicus中累积的HCHs主要以α-HCH的形式存在, 分别占73.96%和100%, 而纵带箬鳎Brachirus swinhonis、斑节对虾Penaeus monodon和疣荔枝螺Thais clavigera中HCHs的主要存在形式分别是γ-HCH(66.10%)、β-HCH(57.14%)和δ-HCH(61.48%), 这说明不同生物体对HCHs的累积方式存在很大差异; 疣荔枝螺、天竺鲷、斑节对虾、日本对虾和纵带箬鳎中的(DDE+DDD)占DDTs总量的百分比分别是100%、100%、91.5%、91.4%和60.5%, 表明这些生物体具有较强的降解DDT能力。各种生物体内DDTs和HCHs的含量都未超过世界卫生组织所规定的食用安全标准, 但是其复合毒性对人类健康的潜在危害值得引起人们的高度关注。
施震,张大文,黄小平,汪飞, . 有机氯农药在粤西海域沉积物和生物体中的累积研究[J]. 热带海洋学报, 2010 , 29(3) : 114 -119 . DOI: 10.11978/j.issn.1009-5470.2010.03.114
Levels and profiles of DDTs and HCHs in fish, shrimp, snail and sediments in the western coastal waters of Guangdong province are discussed in this paper. The total concentrations of DDTs and HCHs in sediments were 9.06ng•g-1 and 4.77ng•g-1, respectively. γ-HCH in sediments was not detected; β-HCH and δ-HCH accounted for a large proportion, in-dicating that there was no current import of fresh HCHs into the western coastal waters of Guangdong province. High value of (DDD+DDE)/T-DDT (0.97) in sediments suggested that there was no current import of fresh DDT into the area. The total concentrations of DDTs and HCHs in biota were 0.60-18.40ng•g-1 and 0.84-14.90ng•g-1, respectively. The main forms of HCHs were α-HCH (73.96% in Apogon cyanosoma and 100% in Penaeus japonicus), γ-HCH (66.10% in Brachirus swinhois), β-HCH (57.14% in Penaeus monodon) and δ-HCH (61.48% in Thais clavigera). This reflects different ways of bioaccumula-tion of HCHs among organisms. The (DDD+DDE) percentage of Thais clavigera, Apogon cyanosoma, Penaeus monodon, Penaeus japonicus and Brachirus swinhonis made up 100%, 100%, 91.5%, 91.4%, 60.5% of total DDTs. This indicates that DDT might be effectively biodegraded by organisms. Though none of the contents of DDT and HCH in various organisms exceeds the tolerable daily intake proposed by the World Health Organization, more attention should be paid to the potential risks of co-toxicity of various toxins to human health.
[1] PARK J S, WADE T L, SWEET S. Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas[J]. Atmospheric Environment, 2001, 35(19): 3 315-3 324.
[2] 王英辉, 祁士华, 龚香宜, 等. 排湖表层沉积物中有机氯农药分布特征和生态风险[J]. 桂林工学院学报, 2008, 28(3): 370-374.
[3] THOMANN R V. Bioaccumulation model of organic chemi-cal distribution in aquatic food chains[J]. Environmental Sci-ence and Technology, 1989, 23(6): 699-707.
[4] KIRRLUK R M, SERVOS M R, WHITE D M, et al. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52(12): 2 660-2 674.
[5] 卢冰, 陈荣华, 王自磐, 等. 北极海洋沉积物中持久性有机污染物分布特征及分子地层学记录的研究[J]. 海洋学报, 2005, 27(4): 167-173.
[6] DOUGHERTY C P, HOLTZ S H, REINERT J C, et al. Die-tary exposures to food contaminants across the United States[J]. Environmental Research Section A, 2000, 84: 170-180.
[7] NAKATA H, KAWAZOE M, ARIZONO K, et al. Or-ganochlorine pesticides and polychlorinated biphenyl resi-dues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary expo-sure[J]. Archives of Environmental Contamination and Toxicology, 2002, 43(4): 473-480.
[8] PANDIT G G, SAHU S K, PURANIK V D. Distribution and fate of persistent organochlorine pesticides in coastal marine environment of Mumbai
[J]. Environment International, 2006, 32(2): 240-243.
[9] JIANG Q T, LEE T K M, CHEN K, et al. Human health risk assessment of organochlorines associated with fish con-sumption in a coastal city in China[J]. Environmental Pollu-tion, 2005, 136: 155-165.
[10] KANNAN K, TANABE S, TATSUKAWA R. Geographical distribution and accumulation features of organochlorine residues in fish in tropical Asia and Oceania[J]. Environ-mental Science and Technology, 1995, 29: 2 673-2 683.
[11] 马绍赛, 周明莹, 赵俊. 黄、渤海沿海贝类体内六六六(HCH)与滴滴涕(DDT)残留水平评价与分析[J]. 海洋水产研究, 2008, 29(5): 70-74.
[12] 丘耀文, 张干, 郭玲利, 等. 大亚湾海域典型有机氯农药生物累积特征及变化因素研究[J]. 海洋学报, 2007, 29(2): 51-58.
[13] 蔡福龙, 林志锋, 陈英, 等. 热带海洋环境中BHC和DDT的行为特征研究[J]. 海洋环境科学, 1998, 17(2): 1-7.
[14] 广东省海岛资源综合调查大队, 广东省海岸带和海涂资源综合调查领导小组办公室. 广东省海岛资源综合调查报告[M]. 广州: 广东科技出版社, 1995: 300-306.
[15] 国家海洋局908专项办公室. 海洋化学调查技术规程[M]. 北京: 海洋出版社, 2006: 109-112.
[16] FOWLER S W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine envi-ronment[J]. Marine Environmental Research, 1990, 29(1): 1-64.
[17] MALDONADO C, BAYONA J M. Organochlorine com-pounds in the north-western Black Sea water: distribution and water column process[J]. Estuarine, Coastal and Shelf Science, 2002, 54(3): 527-540.
[18] YAO Z W, JIANG G B, XU H Z, et al. Distribution of or-ganochlorine pesticides in seawater of the Bering and Chuk-chi Sea[J]. Environmental Pollution, 2002, 116(1): 49-56.
[19] 王泰, 黄俊, 余刚. 海河与渤海湾沉积物中PCBs和OCPs的分布特征[J]. 清华大学学报, 2008, 48(9): 82-85.
[20] 吕景才, 赵元凤, 徐恒振, 等. 大连湾、辽东湾养殖水域 有机氯农药污染状况[J]. 中国水产科学, 2002, 9(1) : 73-77.
[21] HONG H, XU L, ZHANG L P, et al. Environmental fate and chemistry of organic pollutants in the sediments of Xiamen and Victoria Harbors[J]. Marine Pollution Bulletin, 1995, 31: 229-236.
[22] 丘耀文, 周俊良, MASKAOUI K, 等. 大亚湾海域多氯联苯及有机氯农药研究[J]. 海洋环境科学, 2002, 21(1): 46-51.
[23] 陈伟琪, 洪华生, 张路平, 等. 珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物[J]. 厦门大学学报: 自然科学版, 2004, 43: 230-235.
[24] 穆倩, 祁士华, 王君, 等. 小海湾沉积物中有机氯农药的浓度水平和分布特征[J]. 安全与环境工程, 2006, 14(2): 9-12.
[25] 刘华峰, 祁士华, 苏秋克, 等. 海南东寨港表层沉积物中有机氯农药的组成特征[J]. 中国环境科学, 2007, 27(1): 97-101.
[26] SAHSUVAR L, HELM P A, JANTUNEN L M, et al. Henry's law constants for α-, β-, and γ-hexachlorocyclohexanes (HCHs) as a function of temperature and revised estimates of gas exchange in Arctic regions[J]. Atmospheric Environment, 2003, 37: 983-992.
[27] HITCH R K, DAY H R. Unusual persistence of DDT in some western USA soils[J]. Bulletin of Environmental Con-tamination and Toxicology, 1992, 48(2): 259-264.
[28] LEWIS M A, SCOTT I G, BEARDEN W D, et al. Fish tis-sue quality in near-coastal areas of the Gulf of Mexico re-ceiving point source discharges
[J]. The Science of Total En-vironment, 2002, 284: 249-261.
[29] YIM U H, HONG S H, SHIM W J, et al. Levels of persistent organochlorine contaminants in fish from Korea and their potential health risk[J]. Archives of Environmental Con-tamination and Toxicology, 2005, 48: 358-366.
[30] 丘耀文, 郭玲利, 张干. 深圳湾典型有机氯农药的生物累积及其人体健康风险[J]. 生态毒理学报, 2008, 3(1): 42-47.
[31] CHEN J, GAO J. The Chinese total diet study in 1990. Part 1. Chemical contaminants[J]. Journal of AOAC of International, 1993, 76(6): 1 193-1 205. [32] HAYES T B, COLLINS A, LEE M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proceedings of the Na-tional Academy of sciences, 2002, 99(8): 5 476-5 480.
/
〈 | 〉 |