海洋水文学

Rossby波临界周期与海面高度异常能谱临界周期在南海的空间分布特征

展开
  • 1. 中国科学院南海海洋研究所热带海洋环境动力学重点实验室, 广东 广州 510301; 2. 中国科学院研究生院, 北京 100049; 3. 上海海洋气象台, 上海 201300
杨棋(1983—), 女, 四川省攀枝花市人, 硕士研究生, 从事物理海洋学研究。

收稿日期: 2009-04-02

  修回日期: 2009-05-22

  网络出版日期: 2010-07-29

基金资助

中国科学院知识创新工程重大项目(KZCX1-YW-12-01); 中国科学院领域前沿项目(LYQY200702); 国家自然科学基金(40776008, 40976010)

Distribution characteristics of critical periods of Rossby waves and sea-surface height anomaly power spectra in the South China Sea

Expand
  • 1. Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 2. Graduate University of CAS, Beijing 100049, China; 3. Shanghai Marine Meteorological Center, Shanghai 201300, China
杨棋(1983—), 女, 四川省攀枝花市人, 硕士研究生, 从事物理海洋学研究。

Received date: 2009-04-02

  Revised date: 2009-05-22

  Online published: 2010-07-29

Supported by

中国科学院知识创新工程重大项目(KZCX1-YW-12-01); 中国科学院领域前沿项目(LYQY200702); 国家自然科学基金(40776008, 40976010)

摘要

本文利用WOA01(the Word Ocean Atlas 2001)海水各层气候态温盐数据计算南海Rossby波临界周期, 并与其在同纬度西北太平洋中的分布对比。结果显示, 在南海中Rossby波临界周期随纬度增加而逐渐增加, 并且由于南海的特殊地形, 海盆中Rossby波临界周期呈北东—南西向分布, 与其在大洋中呈纬向带状分布不同。通过分析南海各网格点上海面高度异常(SSHA, the sea surface height anomaly)的能谱, 我们发现在海盆中部其临界周期与当地Rossby波临界周期基本相同, 其值也随纬度增加而逐渐增加, 因而从观测上验证了模式结果, 即在海面风应力旋度能谱临界周期小于等于当地Rossby波临界周期的条件下, 海洋响应能谱临界周期等于当地Rossby波临界周期。

本文引用格式

杨棋,陈桂英,尚晓东 . Rossby波临界周期与海面高度异常能谱临界周期在南海的空间分布特征[J]. 热带海洋学报, 2010 , 29(4) : 20 -25 . DOI: 10.11978/j.issn.1009-5470.2010.04.020

Abstract

Using the climatological ocean temperature and salinity data from the Word Ocean Atlas 2001 (WOA01), the authors analyze the distribution of Rossby waves’ critical periods in the South China Sea (SCS) and compare the distribution in the SCS with that in the Northwest Pacific at the same latitude. The result shows that Rossby waves’ critical periods become longer at higher latitudes. Because of the special topography in the SCS, the isolines of Rossby waves’ critical periods in the SCS stretch in a northeast-southwest direction rather than zonally as in the North Pacific. From analyzing the power spectra of the sea-surface height anomalies (SSHA) in the SCS, we find that in the central SCS each of the SSHA power spectral critical periods is close to the local Rossby waves’ critical period and presents similar change of the Rossby critical period as latitude increases. From observations, they validate the theoretical prediction that when the critical period of the wind stress curl power spectrum is equal or smaller than that of the local Rossby waves’ the critical period of the ocean responding power spectrum equals to that of the local Rossby waves’.

参考文献

[1] LIN Xiaopei, YANG Jianyan, WU Dexing, et al. Explaining the global distribution of peak-spectrum variability of sea surface height[J]. Geophys Res Lett, 2008, 35: L14602, doi: 10.1029/2008GL034312.
[2] Longuet-Higgins M S. Planetary waves on a rotating sphere[J]. Philos Trans R Soc London, Ser A, 1964, 279 (1379): 446-473.
[3] HU JIANYU, KAWAMURA H, HONG HUASHENG, et al. 3−6 months variation of sea surface height in the South China Sea and its adjacent ocean[J]. J Oceanogr, 2001, 57: 69-78.
[4] STAMMER D. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements[J]. J Phys Oceanogr, 1997, 27(8): 1743-1769.
[5] Hwang C W, Chen S A. Fourier and wavelet analyses of TOPEX/Poseidon-derived sea level anomaly over the South China Sea: A contribution to the South China Sea Monsoon Experiment[J]. J Geophys Res, 2000, 105(C12): 28785-28804.
[6] Frankignoul C, Muller P, Zorita E. A simple model of the decadal response of the ocean to stochastic wind forcing[J]. J Phys Oceanogr, 1997, 27(8): 1533-1546.
[7] Muller P, Frankignoul C. Direct atmospheric forcing of geostrophic eddies[J]. J Phys Oceanogr, 1981, 11(3): 287-308.
[8] Lippert A, KASe R H. Stochastic wind forcing of baroclinic Rossby waves in the presence of a meridional boundary [J]. J Phys Oceanogr, 1985, 15(2): 184-194.
[9] National Oceanographic Data Center. World Ocean Atlas 2001  (WOA01) [DB/OL]. Silver Spring, MD: National Oceanographic Data Center
[2009−04−02]. http://www.nodc.noaa.gov/OC5/WOA01/qd_ts01.html.
[10] REMOTE SENSING SYSTEMS. QSCAT[DB/OL]. Santa Rosa, CA: Remote Sensing Systems [2009−04−02]. http://www.remss.com.
[11] CHELTON D B, DESZOEKE R A, SCHLAX MG, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. J Phys Oceanogr, 1998, 28(3): 433-460.
[12] SHANG XIAODONG, XIA KEQING. Scaling of the velocity power spectra in turbulent thermal convection[J]. Phys Rev E, 2001, 64, 065301.
[13] 是勋刚. 湍流[M].天津: 天津大学出版社, 1994: 60.
[14] ROBERT H S. Introduction to physical oceanography[M]. College Station: Texas A & M University, 2004: 49.
[15] Killworth P D, CHELTON D B, DE SZOEKE R A. The speed of observed and theoretical long extratropical planetary waves[J]. J Phys Oceanogr, 1997, 27(9): 1946-1966.

文章导航

/