海洋水文学

南海北部集合卡曼滤波同化SST试验

展开
  • 1. 中国科学院南海海洋研究所热带海洋环境动力学重点实验室, 广东 广州 510301; 2. 国家气候中心, 北京 100081
舒业强(1978—), 男, 湖南省临澧县人, 博士, 主要从事海洋资料同化研究。E-mail: Shuyeq@scsio.ac.cn

收稿日期: 2009-09-28

  修回日期: 2009-12-01

  网络出版日期: 2011-10-10

基金资助

财政部行业专项(GYHY200706005); 中国科学院南海海洋研究所所青年人才领域前沿项目(SQ200814); 中国气象局风云气象
卫星遥感开发与应用项目(FiDAF-2-05)

SST assimilation experiment in the northern South China Sea using ensemble Kalman filter

Expand
  • 1. Key Laboratory of Tropical Environmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China;  2. National Climate Center, Beijing 100081, China
舒业强(1978—), 男, 湖南省临澧县人, 博士, 主要从事海洋资料同化研究。E-mail: Shuyeq@scsio.ac.cn

Received date: 2009-09-28

  Revised date: 2009-12-01

  Online published: 2011-10-10

Supported by

财政部行业专项(GYHY200706005); 中国科学院南海海洋研究所所青年人才领域前沿项目(SQ200814); 中国气象局风云气象
卫星遥感开发与应用项目(FiDAF-2-05)

摘要

基于POM (Princeton Ocean Model)建立一个南海北部集合卡曼滤波的同化模式, 主要用于卫星海表面温度的同化。模式的平均水平分辨率为5km, 垂向分层为20层; 侧边界条件嵌套到一个大范围的南海海洋模式, 在同化方案上采用一个均方根集合卡曼滤波算法, 避免观测的扰动; 适当引入局地化算子, 消除样本在空间上的虚假相关, 同时增加集合样本的自由度。该同化试验同化了2008年夏季6月到7月的GHRSST (Global High-Resolution Sea Surface Temperature), 然后采用2008年夏季 SCOPE (Northern South China Sea Coastal Oceanographic Process Ex-periment)航次的温、盐数据对同化结果进行评估。结果表明, 相对于未同化模式模拟结果, 同化模式温度的改善比较明显, 表现在加强了南海北部的上升流, 校正了海表温度的偏差, 改善了温度的垂向分布。由于集合卡曼滤波是一种多变量调整的同化方法, 同化SST不仅能改善表层与次表层的温度分布, 而且对流场和盐度的调整也比较明显。

本文引用格式

舒业强,隋丹丹,王伟文,肖贤俊 . 南海北部集合卡曼滤波同化SST试验[J]. 热带海洋学报, 2010 , 29(5) : 10 -16 . DOI: 10.11978/j.issn.1009-5470.2010.05.010

Abstract

An ensemble Kalman filter (EnKF) scheme is applied to assimilate sea surface temperature (SST) in the northern South China Sea (SCS) using the Princeton Ocean Model (POM). The assimilation model has a horizontal resolution of 5km and a vertical resolution of 20 layers. Lateral boundary conditions are provided by a larger domain SCS model. A square root filter is applied to avoid perturbations induced by observations. Localization is used in the assimilation system to remove pseudo correlations and to add rank of ensemble. The Global High-Resolution Sea Surface Temperature (GHRSST) in June and July 2008 is assimilated in this study. To validate the assimilation results, hydrographic data from the Northern South China Sea Coastal Oceanographic Process Experiment (SCOPE) cruises are used. The results show that the assimilated SST can effectively improve the temperature distribution not only at surface but also in the subsurface. After the SST assimilation, upwelling in this region is strengthened and mixed layer is deepened. At the same time, because the EnKF is a multivariable assimilation scheme, salinity and currents are also corrected by assimilating SST.

参考文献

[1]       HONG BO, WANG DONGXIAO. Diagnostic analysis on the northern South China Sea winter counter-wind current[J]. Chin Sci Bull, 2006, 51(Supp 2): 9-16.

[2]       CHEUNG Y Y. Modeling upwelling circulation over continental shelf in the northern South China sea [D]. Hong Kong: Hong Kong University of Science and Technology, 2006: 11-14.

[3]       GAN JIANPING, LI LI, WANG DONGXIAO, et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea[J]. Cont Shelf Res, 2009, 29 (4): 728-740.

[4]       CHEN D, ZEBIAK S E, CANE M A. Initialization and predictability of a coupled ENSO forecast model[J]. Mon Weather Rev, 1997, 125: 773-788.

[5]       ROSATI A, MIYAKODA K, GUDGEL R. The impact of ocean initial conditions on ENSO forecasting with a coupled model[J]. Mon Weather Rev, 1997, 125: 754-772.

[6]       OBERHUBER J M, ROECKNER E, CHRISTOPH M, et al. Predicting the ′97 El Niño event with a global climate model[J]. Geophys Res Lett, 1998, 25(13): 2273-2276.

[7]       SYU H H, NEELIN D. ENSO in a hybrid coupled model. Part II: prediction with piggyback data assimilation[J]. Climate Dyn, 2000, 16(1): 35-48.

[8]       TWIGT D J, DE GOEDE E D, SCHRAMA E J O, et al. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing[J]. Ocean Dyn, 2007. 57(4/5): 467-484.

[9]       TANG Y, KLEEMAN R, MOORE A M. SST assimilation experiments in a tropical Pacific Ocean model[J]. J Phys Oceanogr, 2004, 34: 623-642.

[10]    BELL M J, FORBES R M, HINES A. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. J Mar Syst, 2000, 25(1): 1-22.

[11]    EZER T, MELLOR G L. Data assimilation experiments in the Gulf Stream region: how useful are satellite-derived surface data for nowcasting the subsurface fields?[J] J Atmos Oceanic Technol, 1997, 14: 1379-1391.

[12]    WU C, SHAW P, CHAO S Y. Assimilating altimetric data into a South China Sea model[J]. J Geophys Res, 1999, 104: 29987-30005.

[13]    王东晓, 施平, 杨昆, . 南海TOPEX海面高度资料的混合同化试验[J]. 海洋与湖沼, 2001, 32(1): 101-108.

[14]    肖贤俊, 王东晓, 徐建军. 2000年夏季南海西南部环流同化实验[J]. 科学通报, 2006, 51(增刊2): 27-32.

[15]    高山, 王凡, 李明悝, . 中尺度涡的高度计资料同化模[J]. 国科学: D(地球科学), 2007, 37(12): 1669-1678.

[16]    SHU YEQIANG, ZHU JIANG, WANG DONGXIAO, et al. Performance of four sea surface temperature assimilation schemes in the South China Sea[J]. Cont Shelf Res, 2009, 29(11/12): 1489-1501.

[17]    EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. J Geophys Res, 1994, 99: 10143-10162.

[18]    BURGERS G, VAN LEEUWEN P J, EVENSEN G. Analysis scheme in the ensemble Kalman filter[J]. Mon Weather Rev, 1998, 126: 1719-1724.

[19]    PHAM D T. Stochastic methods for sequential data assimilation in strongly nonlinear systems[J]. Mon Weather Rev, 2001, 129: 1194-1207

[20]    ANDERSON J L. An ensemble adjustment Kalman filter for data assimilation[J]. Mon Weather Rev, 2001, 129: 2884-2903

[21]    WHITAKER J S, HAMILL T M. Ensemble Data Assimilation without Perturbed Observations[J]. Mon Weather Rev, 2002, 130 (7): 1913-1924.

[22]    EVENSEN G, Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dyn, 2004, 54(6): 539-560.

[23]    LEEUWENBURGH O, Assimilation of along-track altimeter data in the Tropical Pacific region of a global OGCM ensemble[J]. J Roy Meteor Soc, 2005, 131: 2455-2472.

[24]    LEEUWENBURGH O. Validation of an EnKF system for OGCM initialization assimilating temperature, salinity, and surface height measurements[J]. Mon Weather Rev, 2007, 135: 125-139.

[25]    KEPPENNE C L, RIENECKER M M, KURKOWSKI N P, et al. Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction[J]. Nonlin Processes Geophys, 2005, 12: 491-503.

[26]    ZHEN FEI, ZHU JIANG. Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation[J]. J Geophys Res, 2008, 113: 1-16.

[27]    KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Am Meteorol Soc, 1996,77(3): 437-471.

[28]    BOYER T, LEVITUS S, GARCIA H, et al. Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid[J]. Int J Climatol, 2005, 25(7): 931-945.

[29]    MARKS K M, SMITH W H F. An evaluation of publicity available global bathymetry grids[J]. Marine Geophys Res, 2006, 27: 19-34.

[30]    OKE P R, SAKOV P, CORNEY S P. Impacts of localization in the EnKF and EnOI: experiments with a small model[J]. Ocean Dyn, 2007, 57(1): 32-45.

[31]    XIE J, ZHU J, LI Y. Assessment and inter-comparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China[J]. Cont Shelf Res, 2008, 28(9): 1286-1293.


 

 

 

 

 

文章导航

/