海洋化学

夏季珠江口透明胞外聚合颗粒物分布特征

展开
  • 1. 中国科学院南海海洋研究所热带海洋环境动力学重点实验室, 广东 广州510301; 2. 中国科学院南海海洋研究所大亚湾海洋生物综合实验站, 广东 深圳 518121; 3. 中国科学院海洋研究所, 山东 青岛266071
孙翠慈(1977—), 女, 河北省石家庄市人, 助理研究员, 博士, 主要从事海洋环境生态研究。E-mail: suncuici722@tom.com

收稿日期: 2009-11-19

  修回日期: 2010-04-01

  网络出版日期: 2011-10-10

基金资助

中国科学院知识创新工程重要方向性项目(KZCX2-YW-Q07-02); 中科院南海海洋研究所知识创新工程领域前沿项目(LYQ200701)

Distribution of transparent exopolymer particles in the Pearl River Estuary in summer

Expand
  • 1. National Field Station of Marine Ecosystem at Daya Bay, Shenzhen 518121, China; 2. Key Laboratory of Tropical Marine Envi-ronmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 3. Institute of Oceanology, CAS, Qingdao 266071, China
孙翠慈(1977—), 女, 河北省石家庄市人, 助理研究员, 博士, 主要从事海洋环境生态研究。E-mail: suncuici722@tom.com

Received date: 2009-11-19

  Revised date: 2010-04-01

  Online published: 2011-10-10

Supported by

中国科学院知识创新工程重要方向性项目(KZCX2-YW-Q07-02); 中科院南海海洋研究所知识创新工程领域前沿项目(LYQ200701)

摘要

 本文研究夏季珠江口透明胞外聚合颗粒物(TEP)含量以及分布特征。结果表明, 珠江口TEP含量(以黄原胶物质的量计算, 下同)范围在85.0—1234.9μg•L?1之间, 平均值为690.9μg•L?1。表层和底层TEP均值分别为562.3μg•L?1和778.2μg•L?1, 大部分站位表层TEP含量略低于底层。TEP在表层分布自上游至下游逐渐递增, 而向外海以及入海口东西两侧延伸逐渐降低。内河口为底层TEP含量高值区, 虎门附近S3站TEP含量最高。TEP与不同粒径浮游植物叶绿素a的相关性分析表明微型浮游植物(粒径3—20µm)可能对珠江口TEP贡献较大。珠江口TEP/Chl a比值与活性硅酸盐、硝酸盐、铵盐和总磷浓度呈现负相关性; 表层TEP/Chl a比值与盐度呈现正相关性, 这表明盐度和营养盐可能是影响TEP含量的重要因素。

本文引用格式

孙翠慈,王友绍,吴梅林,李楠,林立,宋晖,王玉图,邓超,彭亚兰,孙富林,李超伦 . 夏季珠江口透明胞外聚合颗粒物分布特征[J]. 热带海洋学报, 2010 , 29(5) : 81 -87 . DOI: 10.11978/j.issn.1009-5470.2010.05.081

Abstract

 We investigate the spatial distributions of transparent exopolymer particles (TEP) in the Pearl River Estuary in summer by analyzing the TEP concentration and size-fractions of Chl a. TEP concentration (calculated by the amount of xan-than; the same below) ranged from 85.0μg•L?1 to 1234.9μg•L?1, with an average of 690.9μg•L?1. The averaged TEP concentra-tions in the surface layer and bottom layer were 562.3μg•L?1 and 778.2μg•L?1, respectively, and for most stations lower con-centration of TEP was found in the surface layer as compared to the bottom layer. In the surface layer, TEP increased from the up stream to down stream, and decreased gradually towards the open sea and towards the east and west in the estuary. In the bottom layer, the maximum TEP was observed in the S3 near Humen. The correlation between TEP and Chl a suggests that the excretion of naon-phytoplankton (3-20µm) may contribute more to TEP than other size phytoplankton. The ratio of TEP/(Chl a) shows positive correlation with salinity but negative correlation with nutrition (NO3—N, NH4—N, SiO3—Si and total phos-phorus).

参考文献

[1]       孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191-1198.

[2]       PASSOW U. Transparent exopolymer particles (TEP) in aquaticenvironments[J]. Progress in Oceanography, 2002, 55: 287-333.

[3]       MICHAEL P M, WARD J E, BRUCE A M, et al. Production of transparent exopolymer particles (TEP) by the eastern oyster Crassostrea virginica[J]. Marine Ecology Progress Series, 2005, 288: 141-149.

[4]       ALLDREDGE A L, PASSOW U, LOGAN B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research I, 1993, 40: 1131-1140.

[5]       MARI X, KIORBOE T. Abundance, size distribution and bacterial colonization of transparent exopolymer particles (TEP)[J]. Journal of Plankton Research, 1993, 18: 969-986.

[6]       TRANVIK L J, SHERR E B. Uptake and utilization of 'Colloidal DOM' by heterotrophic flagellates in seawater[J]. Marine Ecology Progress Series, 1993, 92: 301-309.

[7]       PRIETO L, SOMMER F, STIBOR H, et al. Effects of planktonic copepods on transparent exopolymer particles (TEP) abundance and size spectra[J]. Journal of Plankton Research, 2001, 23: 515-525.

[8]       FLOOD P, DEIBEL D, MORRIS C. Filtration of colloidal melanin from sea water by planktonic tunicates[J]. Nature, 1992, 355: 630-632.

[9]       DILLING L, WILSON J, STEINBERG D, et al. Feeding by the euphausiid Euphausia pacifica and the Cpepod(Clanus pacifcus) on marine snow[J]. Marine Ecology Progress Series, 1998, 170: 189-201.

[10]    ENGEL A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton[J]. Journal of Plankton Research, 2002, 24: 49-54.

[11]    HARLAY J, CAROLINE D B, ENGEL A, et al. Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay[J]. Deep-Sea Research I, 2009, 56: 1251-1265.

[12]    QUIGLEY M S, SANTSCHI P H, HUNG C C, et al. Importance of acid polysaccharides for 234Thcomplexation to marine organic matter[J]. Limnology and Oceanography, 2002, 47: 367-377.

[13]    彭安国, 黄奕普. 九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报: 自然科学版, 2007, 46(1): 38-42.

[14]    CHEN C T A, TSUNOGAI S. Carbon and nutrients in the ocean[M]//GALLOWAY J N, MELILLO J J. Asian change in the context of global climate change. Cambridge: Cambridge Univ Press, 1998: 271-307.

[15]    ZHAI W, DAI M H, CAI W J, et al. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China[J]. Marine Chemistry, 2005, 93(1): 21-32.

[16]    GUO X H, CAI W J, ZHAI W D, et al. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary[J]. Continental Shelf Research, 2008, 28: 1424-1434.

[17]    CAI W J, DAI M H. Comment on “Enhanced open ocean storage of CO2 from shelf area pumping ” by Thomas et al. (Science 304) [J]. Science, 2004, 306: 1477.

[18]    DAI M H, MARTIN J M, HONG H S, et al. Preliminary study on the dissolved and colloidal organic carbon in the Zhujiang River estuary[J]. Chinese Journal of Oceanology and Limnology, 2000, 18: 265-273.

[19]    韩舞鹰. 南海海洋化学[M]. 北京: 科学出版社, 1998.

[20]    PASSOW U, ALLDREDGE A L. A dye-binding assay for the spectrophotometric measurement of transparent exopoly­merparticles (TEP)[J]. Limnology and Oceanography, 1995, 40, 1326-1335.

[21]    国家海洋局. 海洋调查规范[S]. 北京: 中国标准出版社, 2007.

[22]    ENGEL A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research I, 2004, 51: 83-92.

[23]    RAMAIAH N, YOSHIKAWA T, FURUYA K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan[J]. Marine Ecology Progress Series, 2001, 212: 79-88.

[24]    WETZ M S, ROBBINS M C, PAERL H W. Transparent exopolymer particles (TEP) in a river-dominated estuary: spatial–temporal distributions and an assessment of controls upon TEP formation[J]. Estuaries and Coasts, 2009, 32: 447-455.

[25]    PRIETO L, NAVARRO G, CóZAR A, et al. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts[J]. Deep Sea Research Part II: Topi­cal Studies in Oceanography, 2006, 53(11/13): 1314-1328.

[26]    RIEBESELL U, REIGSTAD M, WASSMANN P, et al. On the trophic fate of Phaeocystis-derived mucus for vertical flux[J]. Netherlands Journal of Sea Research, 1995, 33: 193-203.

[27]    KIØBOE T, HANSEN J L S, ALLDREDGE A L, et al. Sedimentation of phytoplankton during a diatom bloom: rates and mechanisms[J]. Journal of Marine Research, 1996, 54: 1123-1148.

[28]    HONG Y, SMITH W O, WHITE A M. Studies on transparent exopolymeric particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antartica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33: 368-376.

[29]    JÄHMLICH S, THOMSON L, GRASF G. Factors controlling aggregate formation in the benthic boundary layer of the Mecklanburg Bight (Western Baltic Sea)[J]. Journal of Sea Research, 1998, 41: 245-254.

[30]    ENGEL A, MEYERHÖFER MV, BRÖCKEL K. Chemical andbiological composition of suspended particles and aggregates in the Baltic Sea in summer (1999)[J]. Estuarine, Coastal and Shelf Sciences, 2002, 55: 729-741.

[31]    GARCíA C M, PRIETO L, VARGAS M, et al. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Peninsula)[J]. Journal of Plankton, 2002, 24: 817-833.

[32]    李开枝, 黄良民, 张建林, . 珠江河口咸潮期间浮游植物的群落特征[J]. 热带海洋学报, 2010, 29 (1): 62-68.

[33]    SCHUSTER S, HERNDL G J. Formation and significance of transparent exopolymeric particles in the Northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124: 227-236.

[34]    BEAUVAIS S, PEDROTTI M L, EGGE J, et al. Effects of turbulence on TEP dynamics under contrasting nutrient conditions: implications for aggregation and sedimentation processes[J]. Marine Ecology Progress Series, 2006, 323: 47-57.

[35]    应秩甫. 珠江口伶仃洋锋的类别及其对沉积的影响[J]. 热带海洋. 1994, 13(2): 25-32.


 

文章导航

/