收稿日期: 2009-11-25
修回日期: 2010-04-06
网络出版日期: 2011-10-10
基金资助
国家科技支撑计划专题(2006BAD03 B08-09); 中央级公益性科研院所基本科研业务费重点项目(2007Z01); 上海市科学技术委员会课题(10JC1418600, 08DZ1980802)
Phylogenetic relationships of four Scylla species based on three kinds of mitochondrial sequences
Received date: 2009-11-25
Revised date: 2010-04-06
Online published: 2011-10-10
Supported by
国家科技支撑计划专题(2006BAD03 B08-09); 中央级公益性科研院所基本科研业务费重点项目(2007Z01); 上海市科学技术委员会课题(10JC1418600, 08DZ1980802)
青蟹属(Scylla)分为4个种的观点得到了大多数学者的支持, 但由于分析方法和采用序列的差异, 种间系统发育关系仍然没有解决。本文对青蟹属4种24个体的线粒体12S rRNA、16S rRNA 和COI基因部分序列进行了测定。对3种序列拼接后, 根据不同进化速率采用分组策略, 分别以贝叶氏法和最大似然法构建青蟹属的系统进化树并与Neighbor Joining(NJ)树进行比较。结果显示, 3种进化树都获得完全一致的拓扑结构, 其中贝叶氏法和最大似然法都强烈支持拟穴青蟹S. paramamosain与紫螯青蟹S. tranquebarica是姐妹种(自举值为95%, 贝叶氏法后验概率为1.0)。锯缘青蟹S. serrata分化早于拟穴青蟹和紫螯青蟹, 为它们的姐妹种(自举值等于60%, 贝叶氏法后验概率等于0.95); 榄绿青蟹S. olivacea是4种青蟹中最早分化出来的种类。本文明确了青蟹属物种间系统发育关系, 为澄清我国青蟹的分类地位进一步提供了分子依据。
马凌波,马春艳,张凤英,蒋科技 . 基于线粒体DNA三种基因序列探讨青蟹属的系统发育关系[J]. 热带海洋学报, 2010 , 29(5) : 88 -93 . DOI: 10.11978/j.issn.1009-5470.2010.05.088
Most research supports the idea that there are four species in genus Scylla. Their phylogeny, however, has not been fully understood, especially the interrelationships among S. serrata, S. paramamosain and S. tranquebarica. We analyzed the sequences of 12S rRNA, 16S rRNA and COI gene in all four species of genus Scylla and established the phylogenetic tree by using Bayesian, Maximum Likehood (ML), and Neighbor Joining (NJ) approaches after the sequences were concatenated and partitioned. All three methods produced the same topology. The sister-group relationship between S. paramamosain and S. tranquebarica was highly supported by both Bayesian and ML approaches, with bootstrap value of 95% and Bayesian poste-rior probability of 1.0. S. serrata was the sister group of S. paramamosain and S. tranquebarica (bootstrap = 60%, Bayesian posterior probability = 0.95), while S. olivacea was found as the basal group to the other three species. The phylogenetic in-terrelationships among the four species of genus Scylla were uncovered in this study, which may provide molecular evidence for classification of genus Scylla.
Key words: Scylla; Mitochondrial DNA; phylogeny
[1] ESTAMPADOR E P. Studies on Scylla (Crustacea: Portunidae) I. Revision of the genus[J]. Philippine J Sci, 1949, 78: 95-108.
[2] KEENAN C P, DAVIES P J F, MANN D L. A revision of the genus Scylla de Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae)[J]. Raffles Bull Zool, 1998, 46: 217-245.
[3] KEENAN C P. The fourth species of Scylla[C]//KEENAN C P, BLACKSHAW A. Mud crab aquaculture and biology. ACAIR Proceedings No. 78. Watson Ferguson & Co, Australia, 1999: 48-58.
[4] IMAI H, NUMACHI K. Intra- and interspecific genetic variability and relationships among mud crabs, Scylla spp. (Decapoda: Portunidae), demonstrated by RFLP analysis of mitochondrial DNA[J]. J Anita Genet, 2002, 29: 3-11.
[5] IMAI H, OBATA Y, SEKIYAS, et al. Mitochondrial DNA markers confirm successful stocking of mud crab juveniles(Scylla paramamosain) into a natural population[J]. Suisan Zoshoku, 2002, 50: 149-156.
[6] IMAI H, CHENG J H, HAMASAKI K, et al. Identification of four mud crab species (genus Scylla) using ITS–1 and 16S rDNA markers [J]. Aquat Living Resour, 2004, 17: 31-34.
[7] KLINBUNGA S, BOONYAPALATEE A, PRATOOMCHAT B. Genetic diversity and species-diagnostic markers of mud crabs (genus Scylla) in eastern Thailand determined by RAPD analysis[J]. Mar Biotechno1, 2000, 2: 180-187.
[8] 高天翔, 王玉江, 刘进贤, 等. 三种青蟹线粒体12S rRNA基因序列分析[J]. 水产学报, 2005, 29(3): 313-317.
[9] 王玉江, 高天翔, 韩志强, 等. 中国和越南青蟹线粒体16S rRNA基因序列分析[J]. 中国海洋大学学报, 2005, 35(4): 554-558.
[10] 马凌波, 张凤英, 乔振国, 等. 中国东南沿海青蟹线粒体COI基因部分序列分析[J]. 水产学报, 2006, 30(4): 463-468.
[11] MA L B, ZHANG F Y, MA C Y, et al. Scylla paramamosain (Estampador) the most common mud crab (Genus Scylla) in China: evidence from mtDNA[J]. Aquac Res, 2006, 37: 1694-1698.
[12] 高天翔, 王玉江, 刘进贤, 等. 基于线粒体12S rRNA序列探讨4种青蟹系统发育关系及中国沿海青蟹的分类地位[J]. 中国海洋大学学报, 2007, 37(1): 57-60.
[13] 林琪, 李少菁, 黎中宝,等. 中国东南沿海青蟹属(Scylla)的种类组成[J]. 水产学报, 2007, 31(2): 211-219.
[14] 张凤英, 马凌波, 乔振国, 等. 青蟹线粒体COI 假基因的分离和特征分析[J]. 遗传, 2006, 28(1): 43-49.
[15] ROEHRDANZ R L. An improved primer for PCR amplification of mitochondrial amplification in a variety of insect species[J]. Insect Mol Bio1, 1993, 2: 89-91.
[16] GOPURENKO D, HUGHES J M. Regional patterns of genetic structure among Australian populations of the mud crab Scylla serrata (Crustacee: Decapoda): evidence from mitochondrial DNA[J]. Mar Freshw Res, 2002, 53: 849-857.
[17] TAMURA K, DUDLEY J, NEI M, et al. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Bio Evol, 2007, 24: 1596-1599.
[18] POSADA D, CRANDELL K A. Model test: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14: 817-818.
[19] SWOFFORD D L. PAUP*: Phylogenetic Analyses using Parsimony (and other methods), 4.0 Beta[S]. Sinauer Associates Incorporated, Sunderland, 2003.
[20] JOBB G, VON HAESELER A, STRIMMER K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics[J]. BMC Evol Biol, 2004, 4: 18.
[21] RONQUIST F, HUELSENBECK J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19: 1572-1574.
[22] CUMMINGS M P, OTTO S P, WAKELEY J. Sampling properties of DNA sequence data in phylogenetic analysis[J]. Mol Bio Evol, 1995, 12(5): 814-822.
[23] KIM J. General inconsistency conditions for maximum parsimony: Effects of branch lengths and increasing numbers of taxa[J]. Syst Bio, 1996, 45: 363-374.
[24] GRAYBEAL A. Is it better to add taxa or characters to a difficult phylogenetic problem?[J] Syst Bio, 1998, 47(1): 9-17.
[25] PRITCHARD JK, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
[26] CORANDER J, MARTTINEN P. Bayesian identification of admixture events using multilocus molecular markers[J]. Mol Ecol, 2006, 15(10): 2833-2843.
[27] KUHNER M K. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters[J]. Bioinformatics, 2006, 22(6): 768-770.
[28] HEY J, NIELSEN R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics[J]. Proc Natl Acad Sci USA, 2007, 104(8): 2785-2790.
/
〈 |
|
〉 |